Advanced Search+
Youyi HU (胡友谊), Weidong ZHU (朱卫东), Kun LIU (刘坤), Leng HAN (韩冷), Zhenfeng ZHENG (郑振峰), Huimin HU (胡慧敏). Influence of water content on the inactivation of P. digitatum spores using an air–water plasma jet[J]. Plasma Science and Technology, 2018, 20(4): 44011-044011. DOI: 10.1088/2058-6272/aaa8da
Citation: Youyi HU (胡友谊), Weidong ZHU (朱卫东), Kun LIU (刘坤), Leng HAN (韩冷), Zhenfeng ZHENG (郑振峰), Huimin HU (胡慧敏). Influence of water content on the inactivation of P. digitatum spores using an air–water plasma jet[J]. Plasma Science and Technology, 2018, 20(4): 44011-044011. DOI: 10.1088/2058-6272/aaa8da

Influence of water content on the inactivation of P. digitatum spores using an air–water plasma jet

Funds: This work was supported by National Natural Science Foundation of China (NSFC) under Grants No. 51407020, National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grants No. 2014BAC13B05 and Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University) No. 2007DA10512716404.
More Information
  • Received Date: November 08, 2017
  • In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+ –X2Πi) and O (3p5P–3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+ –X2Πi) rises with the increase of water content, whereas the O (3p5P–3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air– water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+ –X2Πi) is a more effective species in inactivation than O (3p5P–3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+ –X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.
  • [1]
    Kolb J F et al 2008 Appl. Phys. Lett. 92 241501
    [2]
    Hashizume H et al 2015 Japan. J. Appl. Phys. 54 01AG05
    [3]
    Xiong Z et al 2010 Phys. Plasmas 17 123502
    [4]
    Feng H et al 2009 IEEE Trans. Plasma Sci. 37 121
    [5]
    Sun P et al 2010 IEEE Trans. Plasma Sci. 38 1892
    [6]
    Lee H W et al 2009 J. Endodontics 35 587
    [7]
    Claiborne D et al 2014 Int. J. Dent. Hygiene 12 108
    [8]
    Nam S H et al 2013 J. Appl. Oral Sci. 21 265
    [9]
    Sameer U K et al 2007 IEEE Trans. Plasma Sci. 35 1559
    [10]
    Choi J et al 2010 Plasma Process. Polym. 7 258
    [11]
    Fridman G et al 2006 Plasma Chem. Plasma Process. 26 425
    [12]
    Zhang X H et al 2008 Appl. Phys. Lett. 93 021502
    [13]
    Fridman G et al 2007 Plasma Chem. Plasma Process. 27 163
    [14]
    Kim C H et al 2010 Appl. Phys. Lett. 96 243701
    [15]
    Kim J Y et al 2010 Appl. Phys. Lett. 96 203701
    [16]
    Shao T et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 004637
    [17]
    Fang Z et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2288
    [18]
    Zimbron J A et al 2005 Water Res. 39 865
    [19]
    Sarani A et al 2010 Phys. Plasmas 17 063504 055014
    [20]
    Verreycken T et al 2013 Plasma Sources Sci. Technol. 22
    [21]
    Liu J J and Kong M G 2010 J. Phys. D: Appl. Phys. 44 345203
    [22]
    Tatarova E et al 2012 J. Appl. Phys. 112 093301
    [23]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci. Technol. 19 045025
    [24]
    Liu K et al 2016 Eur. Phys. J. D 70 71
    [25]
    Laroussi M 1996 IEEE Trans. Plasma Sci. 24 1188
    [26]
    Cheng C et al 2006 Chin. Phys. 15 1544
    [27]
    Lim J P et al 2007 Phys. Plasmas 14 093504
    [28]
    Kim K et al 2011 Appl. Phys. Lett. 98 073701
    [29]
    Kim S J et al 2009 Appl. Phys. Lett. 94 141502
    [30]
    Li Q et al 2009 Appl. Phys. Lett. 95 141502
    [31]
    Deng S X et al 2010 Curr. Appl. Phys. 10 1164
    [32]
    Laroussi M 2009 IEEE Trans. Plasma Sci. 37 714
    [33]
    Cheng C et al 2014 Chin. Phys. B 23 075204
    [34]
    Jarrige J, Laroussi M and Karakas E 2010 Plasma Sources Sci. Technol. 19 065005
    [35]
    Xiong Q et al 2012 Plasma Sources Sci. Technol. 22 015011
    [36]
    Hiroshi H et al 2013 Appl. Phys. Lett. 103 153708
    [37]
    Liu K et al 2016 Phys. Plasmas 23 123510
    [38]
    Srivastava N and Wang C J 2011 J. Appl. Phys. 110 053304
    [39]
    Tabata T et al 2006 At. Data Nucl. Data Tables 92 375

Catalog

    Article views (310) PDF downloads (480) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return