Citation: | Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18 |
[1] |
Singh H, Antony S and Jha R M 2016 Plasma-Based Radar Cross Section Reduction (Singapore: Springer) (https://doi. org/10.1007/978-981-287-760-4)
|
[2] |
Vidmar R J 1990 Plasma cloaking: air chemistry, broadband absorption and plasma generation Report F49620-85-K-0013 AFOSR (Air Force Of?ce of Scienti?c Research, USAF)
|
[3] |
Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
|
[4] |
Stalder K R, Vidmar R J and Eckstrom D J 1993 J. Appl. Phys. 72 5089
|
[5] |
Yang H W and Liu Y 2010 J. Infrared Millim. Terahertz Waves 31 1075
|
[6] |
Ma L X, Zhang H and Zhang C X 2008 J. Electromagnet. Waves Appl. 22 2285
|
[7] |
Chung M et al 2008 Capacitive coupling return loss of a new pre-ionized monopole plasma antenna Proceedings of 2007 IEEE Region 10 Conference (Taipei, Taiwan: IEEE)p1
|
[8] |
Alexeff I et al 2008 Phys. Plasmas 15 057104
|
[9] |
Kumar R and Bora D 2011 J. Appl. Phys. 109 063303
|
[10] |
Barro O A, Himdi M and Lafond O 2016 IEEE Antennas Wirel. Propag. Lett. 15 726
|
[11] |
Ramli N F, Dagang A N and Ali M T 2015 Analysis of recon?gurable line pattern of capillary plasma antenna array AIP Conf. Proc. 1657 150005
|
[12] |
Théberge F et al 2017 Appl. Phys. Lett. 111 073501
|
[13] |
Chaudhury B and Chaturvedi S 2005 IEEE Trans. Plasma Sci. 33 2027
|
[14] |
Chaudhury B and Chaturvedi S 2009 IEEE Trans. Plasma Sci. 37 2116
|
[15] |
Cheng D and Zheng H X 2015 Study on electromagnetic scattering of perfectly conducting cylinder coated with nonuniform isotropic plasma Proc. of the 8th Int. Conf. on Intelligent Networks and Intelligent Systems (Tianjin, China: IEEE)p 161
|
[16] |
Liu S H and Guo L X 2016 IEEE Trans. Plasma Sci. 44 2838
|
[17] |
He X et al 2015 Plasma Sci. Technol. 17 869
|
[18] |
Zhang Y C et al 2017 Phys. Plasmas 24 083511
|
[19] |
Yuan C X et al 2011 IEEE Trans. Plasma Sci. 39 1768
|
[20] |
Bai B W et al 2015 IEEE Trans. Plasma Sci. 43 2558
|
[21] |
Xu J et al 2017 IEEE Trans. Plasma Sci. 45 938
|
[22] |
Ma L X et al 2010 Analysis on the refraction stealth characteristic of cylinder plasma envelopes Proc. of 2010 Int. Conf. on Microwave and Millimeter Wave Technology (Chengdu, China: IEEE)p 1695
|
[23] |
Wang G et al 2009 RCS calculation of complex targets shielded with plasma based on visual GRECO method Proceedings of the 3rd IEEE International Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (Beijing, China: IEEE) p 950
|
[24] |
Budden K G 1985 The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere (Cambridge, UK: Cambridge University Press)
|
[25] |
HuBJ,WeiG andLaiSL1999 IEEE Trans. Plasma Sci. 27 1131
|
[26] |
Soliman E A, Helaly A and Megahed A A 2007 Prog. Electromagn. Res. 67 25
|
[27] |
Fernsler R F et al 1998 Phys. Plasmas 5 2137
|
[28] |
Macheret S O, Shneider M N and Miles R B 2001 Phys. Plasmas 8 1518
|
[29] |
Heald M A and Wharton C B 1965 Plasma Diagnostics with Microwaves (New York: Wiley)
|
[30] |
Kumar N E and Vadera S R 2017 Stealth materials and technology for airborne systems ed N Prasad and R Wanhill Aerospace Materials and Material Technologies (Singapore: Springer)
|
[31] |
Chew W C 1995 Waves and Fields in Inhomogeneous Media (New York: IEEE Press)
|
[1] | Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65 |
[2] | Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6 |
[3] | Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203 |
[4] | Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6 |
[5] | Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5 |
[6] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[7] | ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09 |
[8] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[9] | QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873 |
2. | Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c |
3. | Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993 |
4. | Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28 |
5. | Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52 |
6. | Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001 |
7. | Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025 |
8. | Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369 |
9. | Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276 |
10. | Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63 |
11. | Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094 |
12. | ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244 |
13. | Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x |
14. | Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef |
15. | Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987 |
16. | Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351 |
17. | Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3 |