Citation: | Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43 |
[1] |
Snyder P B et al 2002 Phys. Plasmas 9 2037
|
[2] |
Zohm H 1996 Plasma Phys. Control. Fusion 38 105
|
[3] |
Loarte A et al 2007 Nucl. Fusion 47 S203
|
[4] |
Kirk A et al 2006 Phys. Rev. Lett. 96 185001
|
[5] |
Yun G S et al 2011 Phys. Rev. Lett. 107 045004
|
[6] |
Maqueda R J et al 2009 J. Nucl. Mater. 390–391 843
|
[7] |
Boedo J A et al 2005 Phys. Plasmas 12 072516
|
[8] |
Eich T, Herrmann A and Neuhauser J 2003 Phys. Rev. Lett. 91 195003
|
[9] |
Devaux S et al 2011 J. Nucl. Mater. 415 S865
|
[10] |
Herrmann A et al 2007 J. Nucl. Mater. 363–365 528
|
[11] |
Endler M et al 2005 Plasma Phys. Control. Fusion 47 219
|
[12] |
Silva C et al 2009 Plasma Phys. Control. Fusion 51 105001
|
[13] |
Yan N et al 2014 Plasma Phys. Control. Fusion 56 095023
|
[14] |
Spolaore M et al 2017 Nucl. Mater. Energy 12 844
|
[15] |
Doyle E J et al 2007 Nucl. Fusion 47 S18
|
[16] |
Kamiya K et al 2007 Plasma Phys. Control. Fusion 49 S43
|
[17] |
Bobkov V V et al 2005 J. Nucl. Mater. 337–339 776
|
[18] |
YangQ Q et al 2015 J. Fusion Energy 34 979
|
[19] |
Wan B N et al 2015 Nucl. Fusion 55 104015
|
[20] |
Zhang W et al 2010 Rev. Sci. Instrum. 81 113501
|
[21] |
Wang H Q et al 2014 Phys. Rev. Lett. 112 185004
|
[22] |
Xu G S et al 2016 Phys. Rev. Lett. 116 095002
|
[23] |
YangQ Q et al 2015 Phys. Plasmas 22 062504
|
[24] |
Xu G S et al 2011 Nucl. Fusion 51 072001
|
[25] |
Jiang M et al 2012 Plasma Phys. Control. Fusion 54 095003
|
[26] |
Ayed N B et al 2009 Plasma Phys. Control. Fusion 51 035016
|
[27] |
Xu G S et al 2014 Nucl. Fusion 54 103002
|
[28] |
Müller H W et al 2011 Nucl. Fusion 51 073023
|
[29] |
Fundamenski W, Pitts R A and (JET EFDA Contributors) 2006 Plasma Phys. Control. Fusion 48 109
|
[30] |
Schmid A et al 2008 Plasma Phys. Control. Fusion 50 045007
|
[31] |
Vianello N et al 2011 Phys. Rev. Lett. 106 125002
|
[32] |
Hutchinson I H 1988 Phys. Rev. A 37 4358
|
[33] |
Kirk A et al 2008 J. Phys. Conf. Ser. 123 012011
|
[1] | Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5 |
[2] | Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326 |
[3] | Weiye XU (徐伟业), Handong XU (徐旵东), Fukun LIU (刘甫坤), Jian WANG (王健), Xiaojie WANG (王晓洁), Yongzhong HOU (侯永忠). Calorimetric power measurements in the EAST ECRH system[J]. Plasma Science and Technology, 2017, 19(10): 105602. DOI: 10.1088/2058-6272/aa7ec9 |
[4] | HU Chundong (胡纯栋), XIE Yahong (谢亚红), XIE Yuanlai (谢远来), LIU Sheng (刘胜), XU Yongjian (许永建), LIANG Lizhen (梁立振), JIANG Caichao (蒋才超), SHENG Peng (盛鹏), GU Yuming (顾玉明), LI Jun (李军), LIU Zhimin (刘智民). Overview of Development Status for EAST-NBI System[J]. Plasma Science and Technology, 2015, 17(10): 817-825. DOI: 10.1088/1009-0630/17/10/02 |
[5] | FU Bao(付豹), ZHANG Qiyong(张启勇), ZHU Ping(朱平), CHENG Anyi(成安义). The Application and Improvement of Helium Turbines in the EAST Cryogenic System[J]. Plasma Science and Technology, 2014, 16(5): 527-531. DOI: 10.1088/1009-0630/16/5/14 |
[6] | XU Ming (徐明), WEN Yizhi (闻一之), XIE Jinlin (谢锦林), YU Changxuan (俞昌旋), et al.. Internal Magnetic Configuration Measured by ECE Imaging on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(12): 1194-1196. DOI: 10.1088/1009-0630/15/12/05 |
[7] | WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07 |
[8] | WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439. |
[9] | XU Ming, XU Xiaoyuan, WEN Yizhi, MA Jinxiu, XIE Jinlin, GAO Bingxi, LAN Tao, LIU Adi, YU Yi, HE Yinghua, WAN Baonian, HU Liqun, GAO Xiang. Electron Cyclotron Emission Imaging on the EAST Tokamak[J]. Plasma Science and Technology, 2011, 13(2): 167-171. |
[10] | ZHONG Guoqiang, HU Liqun, LI Xiaoling, LIN Shiyao, ZHOU Ruijie. Measurement of Neutron Flux at the Initial Phase of Discharge in EAST[J]. Plasma Science and Technology, 2011, 13(2): 162-166. |
1. | Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045 | |
2. | Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931 | |
3. | Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667 | |
4. | Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866 | |
5. | Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3 | |
6. | Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c | |
7. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56 | |
8. | Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582 | |
9. | Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927 | |
10. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696 | |
11. | Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002 | |
12. | Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716 | |
13. | Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274 | |
14. | Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984 | |
15. | Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622 | |
16. | Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb | |
17. | Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844 | |
18. | Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292 | |
19. | Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562 | |
20. | Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433 | |
21. | Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502 | |
22. | Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111 | |
23. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |