Advanced Search+
J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5
Citation: J A JUAREZ-MORENO, U CHACON-ARGAEZ, J BARRON-ZAMBRANO, C CARRERA-FIGUEIRAS, P QUINTANA-OWEN, W TALAVERA-PECH, Y PEREZ-PADILLA, A AVILA-ORTEGA. Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles[J]. Plasma Science and Technology, 2018, 20(6): 65506-065506. DOI: 10.1088/2058-6272/aaabb5

Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles

  • Silica gel and MCM-41 synthesized mesoporous materials were treated with either oxygen (O2), hexamethyldisiloxane (HMDSO) and organic vapors like ethanol (EtOH), and acrylonitrile (AN) inductive plasma. The radiofrequency power for the modification was fixed to 120 W and 30 min, assuring a high degree of organic ionization energy in the plasma. The surface properties were studied by infrared spectroscopy (FTIR), scanning electron microscopy, x-ray photoelectron spectroscopy and dynamic light scattering technique was used for characterizing size distributions. When the silica and MCM-41 particles were modified by AN and HMDSO plasma gases, the surface morphology of the particles was changed, presenting another color, size or shape. In contrast, the treatments of oxygen and EtOH did not affect the surface morphology of both particles, but increased the oxygen content at the surface bigger than the AN and HMDSO plasma treatments. In this study, we investigated the influence of different plasma treatments on changes in morphology and the chemical composition of the modified particles which render them a possible new adsorbent for utilization in sorptive extraction techniques for polar compounds.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return