Advanced Search+
Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
Citation: Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79

Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 11475038.)
More Information
  • Received Date: November 25, 2017
  • Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC+RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.
  • [1]
    Hong S P et al 2010 Japan. J. Appl. Phys. 49 080217
    [2]
    Tarey R D et al 2016 Plasma Sources Sci. Technol. 26 015009
    [3]
    Mikami H et al 2005 Japan. J. Appl. Phys. 44 3817
    [4]
    Liu Y X et al 2017 Phys. Plasmas 24 073512
    [5]
    Li L S et al 2008 Chin. Phys. Lett. 25 2144
    [6]
    Leou K C et al 1999 Japan. J. Appl. Phys. 38 4268
    [7]
    Lee H C, Lee M H and Chung C W 2010 Appl. Phys. Lett. 96 071501
    [8]
    Speth E et al 1999 Fusion Eng. Des. 46 383
    [9]
    Charles C, Boswell R W and Takahashi K 2012 Plasma Phys. Control. Fusion 54 124021
    [10]
    Nabhiraj P Y et al 2010 Nucl. Instrum. Methods Phys. Res. A 621 57
    [11]
    Charles C and Boswell R W 2012 Plasma Sources Sci. Technol. 21 022002
    [12]
    Cheng Y et al 2015 Chin. Phys. Lett. 32 058102
    [13]
    Wang Z et al 2015 Plasma Sci. Technol. 17 191
    [14]
    Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525
    [15]
    Jung S J, Kim K N and Yeom G Y 2006 Thin Solid Films 506?507 460
    [16]
    Mishra A and Yeom G Y 2013 Surf. Coat. Technol. 237 440
    [17]
    Kim K N et al 2006 Appl. Phys. Lett. 89 251501
    [18]
    Kim T H et al 2013 Japan. J. Appl. Phys. 52 05EA02
    [19]
    Mishra A et al 2012 Plasma Sources Sci. Technol. 21 035018
    [20]
    Bang J Y et al 2011 Phys. Plasmas 18 073507
    [21]
    Chen Z P et al 2010 Phys. Plasmas 17 103503
    [22]
    Kim H J et al 2015 J. Appl. Phys. 117 153302
    [23]
    Setsuhara Y, Tsukiyama D and Takenaka K 2008 Surf. Coat. Technol. 202 5238
    [24]
    Lee J, Kim K H and Chung C W 2017 Phys. Plasmas 24 023503
    [25]
    Lee K et al 2008 Plasma Sources Sci. Technol. 17 015014
    [26]
    Liu L et al 2015 J. Appl. Phys. 118 083303
    [27]
    Uhm S et al 2004 Phys. Plasmas 11 4830
    [28]
    Takenaka K et al 2006 Japan. J. Appl. Phys. 45 8046
    [29]
    KimK N, Kim M S and Yeom G Y 2006 Appl. Phys. Lett. 88 161503
    [30]
    You K I, Yoon N S and Hwang S M 1999 Surf. Coat. Technol. 114 60
    [31]
    Li W P et al 2008 J. Appl. Phys. 104 083306
    [32]
    Cunge G et al 2001 J. Appl. Phys. 89 3580
    [33]
    Godyak V A and Piejak R B 1993 Appl. Phys. Lett. 63 3137
    [34]
    Seo S H et al 2000 Phys. Rev. E 62 7155
    [35]
    Lieberman M A and Lichtenberg A J 2004 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [36]
    Lee H C and Chung C W 2013 Phys. Plasmas 20 101607
    [37]
    Lee H C and Chung C W 2015 Phys. Plasmas 22 053505
    [38]
    Lee D S, Lee Y K and Chang H Y 2004 Plasma Sources Sci. Technol. 13 701
    [39]
    Godyak V A and Alexandrovich B M 2004 Phys. Plasmas 11 3553
    [40]
    Chen Z P et al 2011 Plasma Sci. Technol. 13 175
    [41]
    Kawamura E et al 2008 Plasma Sources Sci. Technol. 17 045002
    [42]
    Zhou L F et al 2015 Vacuum 119 209
    [43]
    Gherardi N et al 2000 Plasma Sources Sci. Technol. 9 340
    [44]
    Wang M M and Kushner M J 2010 J. Appl. Phys. 107 023308
    [45]
    Wang M M and Kushner M J 2010 J. Appl. Phys. 107 023309
    [46]
    Diomede P et al 2012 J. Phys. D: Appl. Phys. 45 175204
    [47]
    Zhang Q Z, Wang Y N and Bogaerts A 2014 J. Appl. Phys. 115 223302
    [48]
    Yamaguchi T et al 2012 J. Phys. D: Appl. Phys. 45 025203
    [49]
    Kawamura E et al 2007 J. Vac. Sci. Technol. A 25 1456
    [50]
    Kato K et al 2000 Appl. Phys. Lett. 76 547
    [51]
    Phukan A, Mishra M K and Chakraborty M 2007 J. Phys. D: Appl. Phys. 40 3616
    [52]
    LeeH C, Lee M H and ChungC W 2010 Appl. Phys. Lett. 96 041503
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yichao LI, Jia FU, Yao HUANG, Jinping QIAN, Ang TI, Cheonho BAE, Shengyu FU, Jiankang LI, Yongqi GU, Zhengping LUO, Jinseok KO, Yongqing WEI, Dongmei LIU, Bingjia XIAO, Bo LYU, Xianzu GONG, Baonian WAN. Development of an upgraded motional Stark effect diagnostic system on EAST tokamak[J]. Plasma Science and Technology, 2023, 25(4): 045101. DOI: 10.1088/2058-6272/ac9b9e
    [4]Yan CHAO, Wei ZHANG, Liqun HU, Kangning GENG, Liqing XU, Tao ZHANG, Qing ZANG, Tianfu ZHOU. Observations of mode frequency increase and the appearance of ITB during the m/n = 1/1 kink mode in EAST high electron temperature long pulse operation[J]. Plasma Science and Technology, 2023, 25(2): 025107. DOI: 10.1088/2058-6272/ac92d0
    [5]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]XU Chao (许超), OU Yongsheng (欧勇盛), Eugenio SCHUSTER, and YU Xin(于欣). Computing Open-Loop Optimal Control of the q-Profile in Ramp-Up Tokamak Plasmas Using the Minimal-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 403-410. DOI: 10.1088/1009-0630/15/5/02
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (199) PDF downloads (560) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return