Advanced Search+
Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262
Citation: Zhen ZHENG (郑振), Nong XIANG (项农), Jiale CHEN (陈佳乐), Siye DING (丁斯晔), Hongfei DU (杜红飞), Guoqiang LI (李国强), Yifeng WANG (王一丰), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Bo LYU (吕波), Qing ZANG (臧庆). Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65103-065103. DOI: 10.1088/2058-6272/aab262

Kinetic equilibrium reconstruction for the NBI-and ICRH-heated H-mode plasma on EAST tokamak

Funds: This work was supported by National Key R&D Program of China under Grant No. 2017YFE0300400, National Natural Science Foundation of China under Grant Nos. 11475220, 11405218, 11575248, the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2014GB106001. This work was also sponsored in part by Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2016384).
More Information
  • Received Date: October 17, 2017
  • The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.
  • [1]
    Xia T Y et al 2017 Nucl. Fusion 57 116016
    [2]
    Wan B N et al 2017 Nucl. Fusion 57 102019
    [3]
    Lao L L et al 1985 Nucl. Fusion 25 1611
    [4]
    Blum J et al 1990 Nucl. Fusion 30 1475
    [5]
    Mc Carthy P J 1999 Phys. Plasmas 6 3554
    [6]
    Lao L L et al 2005 Fusion Sci. Technol. 48 968
    [7]
    Zakharov L E et al 2008 Phys. Plasmas 15 062507
    [8]
    Mc Carthy P J and (ASDEX Upgrade Team) 2012 Plasma Phys. Control. Fusion 54 015010
    [9]
    Li G Q et al 2013 Plasma Phys. Control. Fusion 55 125008
    [10]
    Qian J P et al 2009 Plasma Sci. Technol. 11 142
    [11]
    Hu C D 2012 Plasma Sci. Technol. 14 871
    [12]
    Hu C D and Team N B I 2012 Plasma Sci. Technol. 14 567
    [13]
    Hu C D and (The NBI Team) 2013 Plasma Sci. Technol. 15 201
    [14]
    Zhang X J et al 2011 Plasma Sci. Technol. 13 172
    [15]
    Pfeiffer W W et al 1980 ONETWO: A Computer Code for Modeling Plasma Transport in Tokamaks (San Diego, CA: General Atomic Co.)
    [16]
    John H St et al 1994 Transport Simulation of Negative Magnetic Shear Discharges (San Diego, CA: General Atomics Co.)
    [17]
    Heidbrink W W et al 2007 Plasma Phys. Control. Fusion 49 1457
    [18]
    JET Team 2002 Nucl. Fusion 42 86
    [19]
    Sharapov S E et al 2018 Plasma Phys. Control. Fusion 60 014026
    [20]
    WolfR C et al 1993 Nucl. Fusion 33 1835
    [21]
    Budny R V 1994 Nucl. Fusion 34 1247
    [22]
    Pankin A et al 2004 Comput. Phys. Commun. 159 157
    [23]
    Brambilla M 1999 Plasma Phys. Control. Fusion 41 1
    [24]
    Sauter O, Angioni C and Lin-Liu Y R 1999 Phys. Plasmas 6 2834
    [25]
    Sauter O, Angioni C and Lin-Liu Y R 2002 Phys. Plasmas 9 5140
    [26]
    Ding B J et al 2011 Phys. Plasmas 18 082510
    [27]
    Zhao L M et al 2010 Plasma Sci. Technol. 12 118
    [28]
    Jia H et al 2013 Plasma Sci. Technol. 15 834
    [29]
    Liu F K et al 2015 Nucl. Fusion 55 123022
    [30]
    Wang X J et al 2015 Fusion Eng. Des. 96-97 181
    [31]
    Zang Q et al 2010 Plasma Sci. Technol. 12 144
    [32]
    Zang Q et al 2011 Rev. Sci. Instrum. 82 063502
    [33]
    Liu H Q et al 2013 JINST 8 C11002
    [34]
    Chen Y J et al 2015 Rev. Sci. Instrum. 86 023509
    [35]
    Li Y Y et al 2016 Rev. Sci. Instrum. 87 11E501
    [36]
    Yin X H et al 2016 Rev. Sci. Instrum. 87 11E539
    [37]
    Shi Y J et al 2010 Plasma Phys. Control. Fusion 52 085014
    [38]
    Lu B et al 2012 Rev. Sci. Instrum. 83 10E130
    [39]
    Wang J F et al 2010 Plasma Sci. Technol. 12 289
    [40]
    Wang J et al 2012 Phys. Scr. 85 035502
    [41]
    Levinton F M et al 1989 Phys. Rev. Lett. 63 2060
    [42]
    Thomas D M 2003 Rev. Sci. Instrum. 74 1541
    [43]
    Thomas D M et al 2004 Phys. Rev. Lett. 93 065003
    [44]
    Wade M R, Murakami M and Politzer P A 2004 Phys. Rev. Lett. 92 235005
    [45]
    Wei W et al 2014 Chin. Phys. B 23 055201
    [46]
    Li J C et al 2016 Phys. Plasmas 23 122504
    [47]
    Sirén P et al 2015 Plasma Phys. Control. Fusion 57 075015
    [48]
    Stix T H 1972 Plasma Phys. 14 367
    [49]
    Huang Q H et al 2012 Phys. Scr. 85 055503
    [50]
    Qian J P et al 2017 Nucl. Fusion 57 036008
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Article views (247) PDF downloads (469) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return