Advanced Search+
Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
Citation: Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601

Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 51207089).
More Information
  • Received Date: November 07, 2017
  • The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2+→X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (Te) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (Tg) that was measured by Lifbase was in a range from 400 K to 600 K.
  • [1]
    Meng X et al 2014 High Voltage Engineering 40 232 (in Chinese)
    [2]
    Zhu L et al 2013 J. Electrost. 71 728
    [3]
    Tamagawa M, Ihara S and Komaki K 2012 Nihon Kikai Gakkai Ronbunshu B 78 1043
    [4]
    Tang Q et al 2009 J. Phys. D: Appl. Phys. 42 095203
    [5]
    Sun M et al 2016 High Voltage Engineering 42 2487 (in Chinese)
    [6]
    Wang T et al 2016 Water Res. 89 28
    [7]
    Shang K et al 2017 Chem. Eng. J. 311 378
    [8]
    Shang K, Wang H and Li J 2017 Plasma Sci. Technol. 19 064017
    [9]
    Jiang J P et al 2015 Spectroscopy and Spectral Analysis 35 2680 (in Chinese)
    [10]
    Chen Q and Ichiki T 2015 Plasma Sources Sci. Technol. 24 025022
    [11]
    Li X C et al 2017 Spectroscopy and Spectral Analysis 37 1696 (in Chinese)
    [12]
    Dong L et al 2014 Spectroscopy and Spectral Analysis 34 919 (in Chinese)
    [13]
    Banno M et al 2015 Japan. J. Appl. Phys. 54 066101
    [14]
    Sun M, Wang S Q and Zhang Y 2013 High Voltage Engineering 39 2514
    [15]
    Sun M et al 2015 High Voltage Engineering 41 3499 (in Chinese)
    [16]
    Joshi A A et al 1995 J. Hazardous Mater. 41 3
    [17]
    Sun B 1997 J. Electrost. 39 189
    [18]
    Mok Y S and Ham S W 1998 Chem. Eng. Sci. 53 1667
    [19]
    Lowke J J and Morrow R 1994 Pure Appl. Chem. 66 1287
    [20]
    Mukkavilli S et al 1998 IEEE Transaction on Plasma Sci.16 652
    [21]
    LiaoM R et al 2015 Plasma Sci. Technol. 17 743
    [22]
    Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasmas 17 063504
    [23]
    Griem H 1997 Principles of Plasma Spectroscopy (New York: Cambridge University Press)
    [24]
    van der Sijde B and van der Mullen J A M 1990 J. Quant. Spectrosc. Radiat. Transfer 44 39
    [25]
    http:/nist.gov/pml/data/asd.cfm
    [26]
    Pothiraja R et al 2012 J. Phys. D: Appl. Phys. 45 335202
    [27]
    Zheng S J et al 2013 Acta Phys. Sin. 62 5
    [28]
    Jauberteau J et al 1999 J. Phys. D: Appl. Phys. 32 445
    [29]
    Raizer Y P, Kisin V I and Allen J E 1991 Gas Discharge Physics (Berlin: Springer)
    [30]
    Herzberg G 1950 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold)
    [31]
    Goyette A N et al 1996 J. Phys. D: Appl. Phys. 29 1197

Catalog

    Article views (265) PDF downloads (499) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return