Advanced Search+
Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5
Citation: Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5

Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak

Funds: This work has been supported by the National Key R&D Program of China (No. 2014GB106004) and National Natural Science Foundation of China (Nos. 11605235, 11675211, 11505221) and Scientific Research Grant of Hefei Science Center of CAS (No. 2015SRG-HSC010).
More Information
  • Received Date: March 12, 2018
  • Reverse-sheared Alfvén eigenmodes (RSAEs) have been observed by using an interferometer and ECE diagnostics in NBI heated ELMy H-mode plasma on EAST tokamak. A typical feature of these modes is a fast frequency sweeping upward from ∼80 kHz to ∼110 kHz in hundred milliseconds during which the plasma temperature, density and rotation keeps no change. Only core channels of the interferometer can observe these modes, implying a core localized mode. The ECE measurement further showed that these modes located at about ρ=0.37–0.46, just around the position of qmin with ρ∼0.4. These core localized modes are very weak in the magnetic fluctuations measured by mirnov probes mounted at the machine vacuum vessel. A multiple frequency fluctuation component, seemingly the so-called ‘grand cascades’, was also clearly observed on the ECE signal at ρ=0.46. During the phase, a transient internal transport barrier (ITB) in ion temperature and toroidal rotation was observed and the ITB foot was just close to the position of qmin . A modulation of RSAE frequency by ELM event was observed and this modulation could be attributed to rotation decrease or qmin increase due to ELM. Further study of these modes in EAST can provide valuable constraints for the q profile measurement and will be important for the long pulse operation.
  • [1]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
    [2]
    Heidbrink W W 2008 Phys. Plasmas 15 055501
    [3]
    ITER Physics Expert Group on Energetic Particles 1999 Heating and current drive and ITER physics basis editors Nucl. Fusion 39 2471
    [4]
    Fasoli A et al 2007 Nucl. Fusion 47 S264
    [5]
    Breizman B N and Sharapov E 2011 Plasma Phys. Control. Fusion 53 054001
    [6]
    Sharapov E et al 2001 Phys. Lett. A 289 127
    [7]
    Fasoli A et al 2002 Plasma Phys. Control. Fusion 44 B159
    [8]
    Kusama Y et al 1998 Nucl. Fusion 38 1215
    [9]
    Kimura H et al 1998 Nucl. Fusion 38 1303
    [10]
    Snipes J A et al 2000 Plasma Phys. Control. Fusion 42 381
    [11]
    Berk H L et al 2001 Phys. Rev. Lett. 87 185002
    [12]
    Nazikian R et al 2003 Phys. Rev. Lett. 91 125003
    [13]
    Van Zeeland M A et al 2005 Plasma Phys. Control. Fusion 47 L31
    [14]
    Fredrickson E D et al 2007 Phys. Plasmas 14 102510
    [15]
    Gryaznevich M P et al 2008 Nucl. Fusion 48 084003
    [16]
    da Gra?a S et al 2012 Plasma Phys. Control. Fusion 54 095014
    [17]
    Toi K et al 2010 Phys. Rev. Lett. 105 145003
    [18]
    Edlund E M et al 2009 Phys. Rev. Lett. 102 165003
    [19]
    Sandquist P et al 2007 Phys. Plasmas 14 122506
    [20]
    Chen W et al 2014 Nucl. Fusion 54 104002
    [21]
    Sharapov S E et al 2006 Nucl. Fusion 46 S868
    [22]
    Austin M E et al 2006 Phys. Plasmas 13 082502
    [23]
    Greenfield C M et al 1999 Nucl. Fusion 39 1723
    [24]
    Koide Y et al 1994 Phys. Rev. Lett. 72 3662
    [25]
    de Baar M R et al 1999 Phys. Plasmas 6 4645
    [26]
    Bell M et al 1999 Plasma Phys. Control. Fusion 41 A719
    [27]
    Joffrin E et al 2002 Plasma Phys. Control. Fusion 44 1739
    [28]
    Joffrin E et al 2003 Nucl. Fusion 43 1167
    [29]
    Gao X et al 2017 Nucl Fusion 57 056021
    [30]
    Liu F et al 2015 Nucl. Fusion 55 123022
    [31]
    Hu C et al 2015 Plasma Sci. Technol. 17 1
    [32]
    Liu H Q et al 2014 Rev. Sci. Instrum. 85 11D405
    [33]
    Qian J et al 2017 Nucl. Fusion 57 036008
    [34]
    Han X et al 2014 Rev. Sci. Instrm. 85 073506
    [35]
    Li Y et al 2014 Rev. Sci. Instrm. 85 11E428
    [36]
    Lee J et al 2014 Rev. Sci. Instrum. 85 063505
    [37]
    Kramer G J et al 2006 Phys. Plasmas 13 056104
    [38]
    Petty C C et al 2009 Phys. Rev. Lett. 102 045005
    [39]
    Qu H et al 2016 Rev. Sci. Instrm. 87 11E707
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yichao LI, Jia FU, Yao HUANG, Jinping QIAN, Ang TI, Cheonho BAE, Shengyu FU, Jiankang LI, Yongqi GU, Zhengping LUO, Jinseok KO, Yongqing WEI, Dongmei LIU, Bingjia XIAO, Bo LYU, Xianzu GONG, Baonian WAN. Development of an upgraded motional Stark effect diagnostic system on EAST tokamak[J]. Plasma Science and Technology, 2023, 25(4): 045101. DOI: 10.1088/2058-6272/ac9b9e
    [4]Yan CHAO, Wei ZHANG, Liqun HU, Kangning GENG, Liqing XU, Tao ZHANG, Qing ZANG, Tianfu ZHOU. Observations of mode frequency increase and the appearance of ITB during the m/n = 1/1 kink mode in EAST high electron temperature long pulse operation[J]. Plasma Science and Technology, 2023, 25(2): 025107. DOI: 10.1088/2058-6272/ac92d0
    [5]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]XU Chao (许超), OU Yongsheng (欧勇盛), Eugenio SCHUSTER, and YU Xin(于欣). Computing Open-Loop Optimal Control of the q-Profile in Ramp-Up Tokamak Plasmas Using the Minimal-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 403-410. DOI: 10.1088/1009-0630/15/5/02
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (178) PDF downloads (389) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return