Advanced Search+
Zhengwei YAO (姚征伟), Lihong CHENG (成丽红), Rongan TANG (唐荣安), Jukui XUE (薛具奎). Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma[J]. Plasma Science and Technology, 2018, 20(11): 115002. DOI: 10.1088/2058-6272/aacbbf
Citation: Zhengwei YAO (姚征伟), Lihong CHENG (成丽红), Rongan TANG (唐荣安), Jukui XUE (薛具奎). Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma[J]. Plasma Science and Technology, 2018, 20(11): 115002. DOI: 10.1088/2058-6272/aacbbf

Wakefield generation by chirped super- Gaussian laser pulse in inhomogeneous plasma

  • We study the effect of nonlinearly chirped super-Gaussian (SG) laser pulse on wakefield generation in an inhomogeneous plasma. The different types of nonlinearly chirped pulse are employed, and different kinds of inhomogeneous plasma density are used. The maximum wakefield amplitude as the function of nonlinearly chirped laser pulse and inhomogeneous plasma density in parameter space are obtained. Moreover, the dependence of the maximum wakefield amplitude on the SG laser pulse index is discussed. This shows that a larger wakefield can be obtained when the chirped pulse and inhomogeneous density are in the critical regions. Wakefield generation can be controlled by adjusting the chirped SG pulse and inhomogeneous plasma density parameters. That is, we provide an efficient way for the controlled generation of the wakefield.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return