Effect of DBD plasma excitation characteristics on turbulent separation over a hump model
-
Graphical Abstract
-
Abstract
In this paper, the effect of dielectric-barrier discharge plasma excitation characteristics on turbulent boundary layer separation over a hump is investigated using computational fluid dynamics. Four different turbulence models were used for verification. The Reynolds stress model showed the best agreement with the experimental data, in general. Based on the verification and validation, the effect of duty cycle and excitation frequency on the turbulent flow separation were investigated. The results showed that the pulsed plasma excitation could effectively suppress the flow separation by mixing augmentation. With increasing duty cycle and excitation frequency, the flow separation first increased, then decreased again. The optimal duty cycle was 0.75 and the optimal excitation frequency was 50 Hz.
-
-