Advanced Search+
He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
Citation: He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e

Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere

Funds: The authors give thanks to National Natural Science Foun- dation Committee of China (No. 51477025) for the financial support of this work.
More Information
  • Received Date: March 25, 2018
  • With regard to the lower density and energy of electrons in pulsed discharge plasma (PDP) at atmosphere, leading to the lower energy utilization of plasma, we propose a MgO cathode to enhance the plasma intensity according to field emission principle. The MgO cathode is prepared by an electro-depositing MgO film on a stainless steel plate. This way, the positive charges come to the cathode and accumulate on the surface of the MgO film, leading to the enhancement of the electric field intensity between the cathode and MgO film, and result in the strong emission of secondary electrons from the MgO cathode. As a result, the intensity of plasma can be enhanced. Herein, the effect of the MgO cathode on the intensity of PDP is investigated. It was shown that the discharge peak current was improved by 20% compared with that of without the MgO cathode. With increasing the MgO film thickness, discharge intensity, including the peak current, transforming charge and spectrum intensity first increased and then decreased. Higher enhancement of peak current, transforming charge and spectrum intensity were acquired with a higher peak voltage. Compared to a cathode without MgO film, the ozone production is higher with MgO cathode employed. The research proposes a novel approach for improving the intensity of discharge plasma, and also provides a reference for further application of PDP.
  • [1]
    Kim H et al 2008 Plasma Sci. Technol. 10 53
    [2]
    Xu F et al 2009 J. Environ. Sci. 21 328
    [3]
    Ma S M et al 2017 Renew. Sust. Energ. Rev. 67 791
    [4]
    Yang L J 1983 Gas Discharge (Beijing: Science Press) (in Chinese)
    [5]
    Malter L 1936 Phys. Rev. 50 48
    [6]
    Dong B Y, Wu Y and Li J 2005 J. Dalian Univ. Technol. 45 157 (in Chinese)
    [7]
    Wang Q H et al 1998 Appl. Phys. Lett. 72 2912
    [8]
    Spindt C A 1968 J. Appl. Phys. 39 3504
    [9]
    Wang J A et al 1998 Mater. Lett. 35 317
    [10]
    Parkin S S P et al 2004 Nat. Mater. 3 862
    [11]
    Berkhan K et al 2003 Nucl. Instr. Meth. Phys. Res. A 515 185
    [12]
    Olesik J and Olesik Z 2009 Opt. Appl. 39 903
    [13]
    Olesik J and Ca?usiński B 1994 Thin Solid Films 238 271
    [14]
    Choi E H et al 1999 J. Appl. Phys. 86 6525
    [15]
    Aboelfotoh M O and Lorenzen J A 1977 J. Appl. Phys. 48 4754
    [16]
    Yu H K 2018 Thin Solid Films 653 57
    [17]
    Lim J Y et al 2003 J. Appl. Phys. 94 764
    [18]
    Punset C, Boeuf J P and Pitchford L C 1998 J. Appl. Phys. 83 1884
    [19]
    Lee J H et al 2003 Thin Solid Films 435 95
    [20]
    Kim R, Kim Y and Park J W 2000 Thin Solid Films 376 183
    [21]
    Kim Y S, Kim J K and Weber L F 2017 IEEE Trans. Electron Dev. 64 3252
    [22]
    Park C S et al 2017 Mol. Cryst. Liq. Cryst. 645 65
    [23]
    Cho S H et al 2015 ACS appl. Mater. Inter. 7 7559
    [24]
    Deng J et al 2014 Mater. Lett. 134 51
    [25]
    Shen Y S, Yi Z Q and Wang H 2004 J. Chin. Electron Microsc. Soc. 23 451
    [26]
    Molnar J P 1951 Phys. Rev. 83 940
    [27]
    Jiang N et al 2018 Chem. Eng. J. 350 19
    [28]
    Yao S L et al 2015 J. Electrostat. 75 35
    [29]
    ?imek M, Pek?rek S and Prukner V 2010 Plasma Chem. Plasma Process. 30 607
  • Related Articles

    [1]Qiuyun WANG (王秋云), Hongxia QI (齐洪霞), Xiangyu ZENG (曾祥榆), Anmin CHEN (陈安民), Xun GAO (高勋), Mingxing JIN (金明星). Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas[J]. Plasma Science and Technology, 2021, 23(11): 115504. DOI: 10.1088/2058-6272/ac183b
    [2]Lunjiang CHEN (陈伦江), Wenbo CHEN (陈文波), Chuandong LIU (刘川东), Honghui TONG (童洪辉), Qing ZHAO (赵青). Estimation of plasma parameters in the process of micro-scale powder plastic and characteristics of its products[J]. Plasma Science and Technology, 2019, 21(7): 74006-074006. DOI: 10.1088/2058-6272/ab00ac
    [3]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [4]Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
    [5]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [6]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [9]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [10]HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13

Catalog

    Article views (121) PDF downloads (283) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return