Advanced Search+
Desheng ZHOU (周德胜), Jingfeng TANG (唐井峰), Ximing ZHU (朱悉铭), Daren YU (于达仁), Chaohai ZHANG (张潮海). Experimental investigation on upstream and downstream discharges in airflows[J]. Plasma Science and Technology, 2018, 20(12): 125402. DOI: 10.1088/2058-6272/aadc05
Citation: Desheng ZHOU (周德胜), Jingfeng TANG (唐井峰), Ximing ZHU (朱悉铭), Daren YU (于达仁), Chaohai ZHANG (张潮海). Experimental investigation on upstream and downstream discharges in airflows[J]. Plasma Science and Technology, 2018, 20(12): 125402. DOI: 10.1088/2058-6272/aadc05

Experimental investigation on upstream and downstream discharges in airflows

Funds: This work is supported by National Natural Science Foun- dation of China (Grant Nos. 51437002, 51676053).
More Information
  • Received Date: May 16, 2018
  • Dielectric barrier discharge has widely used in airflow control, ignition and combustion, and other applications; the influence of airflow on dielectric barrier discharge is of extensive concern. Previous studies demonstrate that the discharge becomes more uniform and the discharge intensity decreases with increasing of airflow velocity. In this study, we adopt a discharge cell construction with upstream and downstream structure and study the discharge states and intensities. The experimental results demonstrate that within a specific range of airflow speed, the upstream discharge intensity is decreased, and the downstream discharge intensity is enhanced. The physical basis for this phenomenon is proposed as follows: Within a pulse interval time, some particles, such as charged and metastable particles produced by the upstream discharge, could be transported to the downstream region. The concentration of particles in the downstream region is increased, and these particles play a pre-ionization role in the downstream discharge, the intensity of the downstream discharge is enhanced. Further, factors such as the pulse frequency and the distance between electrodes are discussed in detail, along with the conditions for enhancing downstream discharge intensity.
  • [1]
    Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
    [2]
    Riherd M and Roy S 2014 J. Phys. D: Appl. Phys. 47 125203
    [3]
    Breden D et al 2013 J. Appl. Phys. 114 083302
    [4]
    Vincent-Randonnier A et al 2007 Plasma Sources Sci. Technol. 16 149
    [5]
    Gherardi N et al 2000 Plasma Sources Sci. Technol. 9 340
    [6]
    Gherardi N and Massines F 2001 IEEE Trans. Plasma Sci. 29 536
    [7]
    Pavon S et al 2007 J. Phys. D: Appl. Phys. 40 1733
    [8]
    Pang L et al 2011 IEEE Trans. Plasma Sci. 39 2922
    [9]
    Liu F C, Zhang D Z and Wang D Z 2010 Phys. Plasmas 17 103508
    [10]
    Luo H Y et al 2008 J. Phys. D: Appl. Phys. 41 205205
    [11]
    Luo H Y et al 2010 J. Phys. D: Appl. Phys. 43 155201
    [12]
    Tang J F et al 2014 IEEE Trans. Plasma Sci. 42 753
    [13]
    Tang J F, Wei L Q and Huo Y X 2016 Plasma Sci. Technol. 18 273
    [14]
    Qi H C et al 2016 Plasma Sci. Technol. 18 520
    [15]
    Qi H C et al 2016 Phys. Plasmas 23 053509
    [16]
    Fan Z H et al 2016 Phys. Plasmas 23 123520
    [17]
    Wang Z et al 2009 Plasma Sci. Technol. 11 177
    [18]
    Li Q et al 2009 Appl. Phys. Lett. 95 141502
    [19]
    Uchida G et al 2015 IEEE Trans. Plasma Sci. 43 737
    [20]
    Liu W Z et al 2017 J. Phys. D: Appl. Phys. 50 415201
    [21]
    Darny T et al 2017 Plasma Sources Sci. Technol. 26 105001
    [22]
    Robert E et al 2014 Plasma Sources Sci. Technol. 23 012003
    [23]
    Bradley J W et al 2011 IEEE Trans. Plasma Sci. 39 2312
    [24]
    Shao T et al 2011 Plasma Sci. Technol. 13 735
    [25]
    Shao T et al 2011 Plasma Sci. Technol. 13 591
    [26]
    Zhang C et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304
    [27]
    Gu J W et al 2016 Plasma Sci. Technol. 18 230
    [28]
    Song Y et al 2016 Phys. Plasmas 23 083520
    [29]
    Li X C et al 2013 Acta Phys. Sin. 62 165205 (in Chinese)
    [30]
    Stepanova V et al 2017 Contrib. Plasmas Phys. 57 182
    [31]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
    [32]
    Wu Y et al 2008 Appl. Phys. Lett. 93 031503
    [33]
    Ono R, Nakagawa Y and Oda T 2011 J. Phys. D: Appl. Phys. 44 485201
    [34]
    Yu S et al 2016 Phys. Plasmas 23 023510
    [35]
    Herron J T 1999 J. Phys. Chem. Ref. Data 28 1453
    [36]
    Guerra V, Sá P A and Loureiro J 2004 Eur. Phys. J. Appl. Phys. 28 125
    [37]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
    [38]
    H?ft H, Becker M M and Kettlitz M 2016 Phys. Plasmas 23 033504
    [39]
    Ning W J et al 2017 Phys. Plasmas 24 073509
    [40]
    Hao Y P et al 2018 Phys. Plasmas 25 013516
    [41]
    Simeni M S et al 2018 J. Phys. D: Appl. Phys. 51 01LT01
    [42]
    Obradovi? B M, Ivkovi? S S and Kuraica M M 2008 Appl. Phys. Lett. 92 191501
    [43]
    Pan J, Li L and Wang Y N 2016 Plasma Sci. Technol. 18 1081
  • Related Articles

    [1]Yongfeng XU (徐永锋), Hongfei GUO (郭宏飞), Yuying WANG (王玉英), Zhihui FAN (樊智慧), Chunsheng REN (任春生). Effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge in atmospheric airflow[J]. Plasma Science and Technology, 2020, 22(5): 55403-055403. DOI: 10.1088/2058-6272/ab6530
    [2]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [3]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [4]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [5]TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
    [6]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [7]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [8]LIU Zhongwei (刘忠伟), YANG Lizhen (杨丽珍), WANG Zhengduo (王正铎), et al.. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon[J]. Plasma Science and Technology, 2013, 15(9): 871-874. DOI: 10.1088/1009-0630/15/9/07
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.

Catalog

    Article views (138) PDF downloads (290) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return