Advanced Search+
Desheng ZHOU (周德胜), Jingfeng TANG (唐井峰), Ximing ZHU (朱悉铭), Daren YU (于达仁), Chaohai ZHANG (张潮海). Experimental investigation on upstream and downstream discharges in airflows[J]. Plasma Science and Technology, 2018, 20(12): 125402. DOI: 10.1088/2058-6272/aadc05
Citation: Desheng ZHOU (周德胜), Jingfeng TANG (唐井峰), Ximing ZHU (朱悉铭), Daren YU (于达仁), Chaohai ZHANG (张潮海). Experimental investigation on upstream and downstream discharges in airflows[J]. Plasma Science and Technology, 2018, 20(12): 125402. DOI: 10.1088/2058-6272/aadc05

Experimental investigation on upstream and downstream discharges in airflows

Funds: This work is supported by National Natural Science Foun- dation of China (Grant Nos. 51437002, 51676053).
More Information
  • Received Date: May 16, 2018
  • Dielectric barrier discharge has widely used in airflow control, ignition and combustion, and other applications; the influence of airflow on dielectric barrier discharge is of extensive concern. Previous studies demonstrate that the discharge becomes more uniform and the discharge intensity decreases with increasing of airflow velocity. In this study, we adopt a discharge cell construction with upstream and downstream structure and study the discharge states and intensities. The experimental results demonstrate that within a specific range of airflow speed, the upstream discharge intensity is decreased, and the downstream discharge intensity is enhanced. The physical basis for this phenomenon is proposed as follows: Within a pulse interval time, some particles, such as charged and metastable particles produced by the upstream discharge, could be transported to the downstream region. The concentration of particles in the downstream region is increased, and these particles play a pre-ionization role in the downstream discharge, the intensity of the downstream discharge is enhanced. Further, factors such as the pulse frequency and the distance between electrodes are discussed in detail, along with the conditions for enhancing downstream discharge intensity.
  • [1]
    Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
    [2]
    Riherd M and Roy S 2014 J. Phys. D: Appl. Phys. 47 125203
    [3]
    Breden D et al 2013 J. Appl. Phys. 114 083302
    [4]
    Vincent-Randonnier A et al 2007 Plasma Sources Sci. Technol. 16 149
    [5]
    Gherardi N et al 2000 Plasma Sources Sci. Technol. 9 340
    [6]
    Gherardi N and Massines F 2001 IEEE Trans. Plasma Sci. 29 536
    [7]
    Pavon S et al 2007 J. Phys. D: Appl. Phys. 40 1733
    [8]
    Pang L et al 2011 IEEE Trans. Plasma Sci. 39 2922
    [9]
    Liu F C, Zhang D Z and Wang D Z 2010 Phys. Plasmas 17 103508
    [10]
    Luo H Y et al 2008 J. Phys. D: Appl. Phys. 41 205205
    [11]
    Luo H Y et al 2010 J. Phys. D: Appl. Phys. 43 155201
    [12]
    Tang J F et al 2014 IEEE Trans. Plasma Sci. 42 753
    [13]
    Tang J F, Wei L Q and Huo Y X 2016 Plasma Sci. Technol. 18 273
    [14]
    Qi H C et al 2016 Plasma Sci. Technol. 18 520
    [15]
    Qi H C et al 2016 Phys. Plasmas 23 053509
    [16]
    Fan Z H et al 2016 Phys. Plasmas 23 123520
    [17]
    Wang Z et al 2009 Plasma Sci. Technol. 11 177
    [18]
    Li Q et al 2009 Appl. Phys. Lett. 95 141502
    [19]
    Uchida G et al 2015 IEEE Trans. Plasma Sci. 43 737
    [20]
    Liu W Z et al 2017 J. Phys. D: Appl. Phys. 50 415201
    [21]
    Darny T et al 2017 Plasma Sources Sci. Technol. 26 105001
    [22]
    Robert E et al 2014 Plasma Sources Sci. Technol. 23 012003
    [23]
    Bradley J W et al 2011 IEEE Trans. Plasma Sci. 39 2312
    [24]
    Shao T et al 2011 Plasma Sci. Technol. 13 735
    [25]
    Shao T et al 2011 Plasma Sci. Technol. 13 591
    [26]
    Zhang C et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304
    [27]
    Gu J W et al 2016 Plasma Sci. Technol. 18 230
    [28]
    Song Y et al 2016 Phys. Plasmas 23 083520
    [29]
    Li X C et al 2013 Acta Phys. Sin. 62 165205 (in Chinese)
    [30]
    Stepanova V et al 2017 Contrib. Plasmas Phys. 57 182
    [31]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
    [32]
    Wu Y et al 2008 Appl. Phys. Lett. 93 031503
    [33]
    Ono R, Nakagawa Y and Oda T 2011 J. Phys. D: Appl. Phys. 44 485201
    [34]
    Yu S et al 2016 Phys. Plasmas 23 023510
    [35]
    Herron J T 1999 J. Phys. Chem. Ref. Data 28 1453
    [36]
    Guerra V, Sá P A and Loureiro J 2004 Eur. Phys. J. Appl. Phys. 28 125
    [37]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
    [38]
    H?ft H, Becker M M and Kettlitz M 2016 Phys. Plasmas 23 033504
    [39]
    Ning W J et al 2017 Phys. Plasmas 24 073509
    [40]
    Hao Y P et al 2018 Phys. Plasmas 25 013516
    [41]
    Simeni M S et al 2018 J. Phys. D: Appl. Phys. 51 01LT01
    [42]
    Obradovi? B M, Ivkovi? S S and Kuraica M M 2008 Appl. Phys. Lett. 92 191501
    [43]
    Pan J, Li L and Wang Y N 2016 Plasma Sci. Technol. 18 1081
  • Cited by

    Periodical cited type(14)

    1. Zhang, C., Song, W., Lyu, Y. et al. Dual-branch convolutional neural network with attention modules for LIBS-NIRS data fusion in cement composition quantification. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2025.343899
    2. Jiang, J., Pang, X., Feng, J. et al. Identification of Antibacterial Components from Compound Sophora Flavescens Extract by Mean Impact Value Based on Support Vector Regression | [基于 SVR 模型的 MIV 法的复方苦参抗菌成分的辨识研究]. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2025, 58(2): 138-146. DOI:10.11784/tdxbz202401006
    3. Cai, Y., Ma, X., Wang, X. Quantitative analysis of cement raw materials composition by laser-induced breakdown spectroscopy based on iPLS feature band selection. 2025. DOI:10.1145/3704558.3707063
    4. Chang, C., Di Maio, F., Bheemireddy, R. et al. Rapid quality control for recycled coarse aggregates (RCA) streams: Multi-sensor integration for advanced contaminant detection. Computers in Industry, 2025. DOI:10.1016/j.compind.2024.104196
    5. Hao, Z., Liu, K., Lian, Q. et al. Machine learning in laser-induced breakdown spectroscopy: A review. Frontiers of Physics, 2024, 19(6): 62501. DOI:10.1007/s11467-024-1427-2
    6. Cai, Y., Ma, X., Huang, B. et al. LIBS combined with SG-SPXY spectral data pre-processing for cement raw meal composition analysis. Applied Optics, 2024, 63(6): A24-A31. DOI:10.1364/AO.505255
    7. Jia, W., Zhang, Z., Shan, Q. et al. Determination of Molybdenum in Geological Ores by Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine Regression (SVMR) and Data Preprocessing. Analytical Letters, 2024, 57(13): 2004-2017. DOI:10.1080/00032719.2023.2284216
    8. Zhang, C., Song, W., Hou, Z. et al. Improving quantitative analysis of cement elements in laser-induced breakdown spectroscopy through combining matrix matching with regression. Journal of Analytical Atomic Spectrometry, 2023, 38(12): 2554-2561. DOI:10.1039/d3ja00306j
    9. Luo, X., Chen, R., Kabir, M.H. et al. Fast Detection of Heavy Metal Content in Fritillaria thunbergii by Laser-Induced Breakdown Spectroscopy with PSO-BP and SSA-BP Analysis. Molecules, 2023, 28(8): 3360. DOI:10.3390/molecules28083360
    10. Cabral, J.S., Menegatti, C.R., Nicolodelli, G. Laser-induced breakdown spectroscopy in cementitious materials: A chronological review of cement and concrete from the last 20 years. TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2023.116948
    11. Xie, G., Sun, L., Shang, D. et al. Model transfer method based on piecewise direct standardization in laser-induced-breakdown spectroscopy. Applied Optics, 2022, 61(30): 9069-9077. DOI:10.1364/AO.471891
    12. Li, X., Lu, X., Zhang, Y. et al. Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning. Chinese Physics B, 2022, 31(5): 054212. DOI:10.1088/1674-1056/ac3810
    13. Wang, G., Sun, L., Wang, W. et al. A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074002. DOI:10.1088/2058-6272/ab76b4
    14. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return