Advanced Search+
Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
Citation: Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd

Overview of the J-TEXT progress on RMP and disruption physics

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB118000, 2014GB106001, 2015GB111001, 2015GB111002 and 2015GB120003) and National Natural Science Foundation of China (Nos. 11505069, 11275079 and 11405068).
More Information
  • Received Date: April 23, 2018
  • The J-TEXT tokamak has been operated for ten years since its first plasma obtained at the end of 2007. The diagnostics development and main modulation systems, i.e. resonant magnetic perturbation (RMP) systems and massive gas injection (MGI) systems, will be introduced in this paper. Supported by these efforts, J-TEXT has contributed to research on several topics, especially on RMP physics and disruption mitigation. Both experimental and theoretical research show that RMP could lock, suppress or excite the tearing modes, depending on the RMP amplitude, frequency difference between RMP and rational surface rotation, and initial stabilities. The plasma rotation, particle transport and operation region are influenced by the RMP. Utilizing the MGI valves, disruptions have been mitigated with pure He, pure Ne, and a mixture of He and Ar (9:1). A significant runaway current plateau could be generated with moderate amounts of Ar injection. The RMP has been shown to suppress the generation of runaway current during disruptions.
  • [1]
    Zhuang G et al 2011 Nucl. Fusion 51 094020
    [2]
    Zhuang G et al 2009 Plasma Sci. Technol. 11 439
    [3]
    Gentle K W et al 1995 The Texas experimental tokamak: a plasma research facility DOE/ER/542-41-151, FRCR #470 University of Texas at Austin (https://doi.org/10. 2172/468596)
    [4]
    Zhuang G et al 2013 Nucl. Fusion 53 104014
    [5]
    Zhuang G et al 2015 Nucl. Fusion 55 104003
    [6]
    Zhuang G et al 2017 Nucl. Fusion 57 102003
    [7]
    Chen J et al 2014 Rev. Sci. Instrum. 85 11D303
    [8]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112
    [9]
    Jin W et al 2014 Rev. Sci. Instrum. 85 023509
    [10]
    Cheng Z F et al 2014 Rev. Sci. Instrum. 85 11E423
    [11]
    Li J C et al 2014 Rev. Sci. Instrum. 85 11E414
    [12]
    Zhang X L et al 2014 Rev. Sci. Instrum. 85 11E420
    [13]
    Tong R H et al 2018 Measurement of the toroidal radiation asymmetry during massive gas injection triggered disruptions on J-TEXT Rev. Sci. Instrum. accepted
    [14]
    Huang D W et al 2014 Rev. Sci. Instrum. 85 11D845
    [15]
    Tang Y et al 2015 Phys. Lett. A 379 1043
    [16]
    Tong R H et al 2016 Rev. Sci. Instrum. 87 11E113
    [17]
    Guo D J et al 2017 Rev. Sci. Instrum. 88 123502
    [18]
    Ding Y H et al 2014 Rev. Sci. Instrum. 85 043502
    [19]
    Guo D J et al 2017 AIP Adv. 7 105002
    [20]
    Rao B et al 2014 Fusion Eng. Des. 89 378
    [21]
    Craven W A 1996 Resonant external magnetic perturbations on the Texas experimental tokamak PhD The University of Texas at Austin, Washington, USA
    [22]
    Zeng W B et al 2014 Plasma Sci. Technol. 16 1074
    [23]
    Yi B et al 2013 Fusion Eng. Des. 88 1528
    [24]
    Yi B et al 2014 Rev. Sci. Instrum. 85 113501
    [25]
    Luo Y H et al 2014 Rev. Sci. Instrum. 85 083504
    [26]
    Hu Q M et al 2013 Phys. Plasmas 20 092502
    [27]
    Hu Q M et al 2012 Nucl. Fusion 52 083011
    [28]
    Rao B et al 2013 Phys. Lett. A 377 315
    [29]
    Jin W et al 2013 Plasma Phys. Controlled Fusion 55 035010
    [30]
    Rao B et al 2013 Rev. Sci. Instrum. 84 043504
    [31]
    Hu Q M et al 2014 Nucl. Fusion 54 064013
    [32]
    Rao B et al 2013 Plasma Phys. Controlled Fusion 55 122001
    [33]
    Yan W et al 2018 Plasma Phys. Controlled Fusion 60 035007
    [34]
    Hu Q M et al 2014 Nucl. Fusion 54 122006
    [35]
    Wang N C et al 2014 Nucl. Fusion 54 064014
    [36]
    Yu Q and Günter S 2008 Nucl. Fusion 48 065004
    [37]
    Fitzpatrick R 1993 Nucl. Fusion 33 1049
    [38]
    Fitzpatrick R, Rossi E and Yu E P 2001 Phys. Plasmas 8 4489
    [39]
    Hu Q M et al 2016 Plasma Phys. Controlled Fusion 58 025001
    [40]
    Huang M X et al 2016 Plasma Phys. Controlled Fusion 58 125002
    [41]
    Yu Q et al 2008 Nucl. Fusion 48 024007
    [42]
    Cheng Z F et al 2013 Rev. Sci. Instrum. 84 073508
    [43]
    Loewenbrueck K et al 2007 Proc. 34st EPS Conf. on Plasma Physics (Warsaw, Poland, 2007) vol 31F (ECA) P-1.136 http://epsppd.epfl.ch/Warsaw/pdf/P1 136.pdf
    [44]
    Wang H H et al 2018 Nucl. Fusion 58 056024
    [45]
    Liang Y F 2014 Edge localized mode (ELM) Springer Series on Atomic, Optical, and Plasma Physics ed V Igochine (New York: Springer) p 143
    [46]
    Wesson J A et al 1989 Nucl. Fusion 29 641
    [47]
    Schuller F C 1995 Plasma Phys. Controlled Fusion 37 A135
    [48]
    Hender T C et al 2007 Nucl. Fusion 47 S128
    [49]
    Riccardo V and JET EFDA contributors 2003 Plasma Phys. Controlled Fusion 45 A269
    [50]
    Martín-Solís J R et al 2014 Nucl. Fusion 54 083027
    [51]
    Zhang M et al 2015 J. Fusion Energy 34 1411
    [52]
    Chen Z Y et al 2016 Nucl. Fusion 56 112013
    [53]
    Plyusnin V V et al 2006 Nucl. Fusion 46 277
    [54]
    Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293
    [55]
    Finken K H et al 2007 Nucl. Fusion 47 91
    [56]
    Finken K H et al 2006 Nucl. Fusion 46 S139
    [57]
    Lehnen M et al 2008 Phys. Rev. Lett. 100 255003
    [58]
    Chen Z Y et al 2012 Rev. Sci. Instrum. 83 056108
  • Cited by

    Periodical cited type(14)

    1. Song, Y., Zhao, J., Zheng, B. et al. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties. Plasma Science and Technology, 2025, 27(1): 015501. DOI:10.1088/2058-6272/ad8f0b
    2. Dong, M., Yang, Z., Xia, G. et al. Enhance the Surface Insulation Properties of EP Materials via Plasma and Fluorine-Containing Coupling Agent Co-Fluorinated Graphene. Nanomaterials, 2024, 14(24): 2009. DOI:10.3390/nano14242009
    3. Wei, M., Gao, W., Zhao, D. et al. Research on the Electrical and Hydrophobicity Properties of BN/RTV Composite Materials by Plasma Treatment. Springer Proceedings in Physics, 2024. DOI:10.1007/978-981-97-2245-7_19
    4. Yanze, S., Qijun, D., Jun, X. et al. Plasma Etching Constructs Step Gradient Surface Conductivity to Improve the Insulation Properties of Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2603-2612. DOI:10.1109/TDEI.2024.3403535
    5. Ruan, H., Xie, Q., Duan, Q. et al. Regulation Method and Mechanism of Functionalized Modified Nano Filler on Electrical Properties of Epoxy Resin. Engineering Materials, 2024. DOI:10.1007/978-981-99-9050-4_4
    6. Duan, Q., Song, Y., Shao, S. et al. Enhanced surface-insulating performance of EP composites by doping plasma-fluorinated ZnO nanofiller. Plasma Science and Technology, 2023, 25(10): 104004. DOI:10.1088/2058-6272/acdb53
    7. Wang, T., Wang, X., Yang, W. et al. Formation of wettability gradient surface on polyethylene terephthalate by maskless argon microplasma jet writing for droplet self-driven application. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157383
    8. Duan, Q., Xia, G., Song, Y. et al. Plasma Fluorinated Nano-SiO2 Enhances the Surface Insulation Performance of Glass Fiber Reinforced Polymer. Nanomaterials, 2023, 13(5): 906. DOI:10.3390/nano13050906
    9. Li, F., Wei, P., Chu, J. et al. Promotion on Surface Charge Dissipation by Surface Functionally Graded Modification of SDBD. 2023. DOI:10.1109/ICEMPE57831.2023.10139613
    10. Cui, X., Shen, J., Zhou, Y. et al. Nanosecond pulse-driven atmospheric-pressure plasmas for polymer surface modifications: Wettability performance, insulation evaluation and mechanisms. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153640
    11. Xie, Q., Duan, Q., Xia, G. et al. Effect of liquid diffusion and segregation on GFRP insulation performance in typical hygrothermal environment. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110152
    12. Yan, J., Liang, G., Duan, Q. et al. Effect of Plasma Surface Step Gradient Silicon Deposition on Flashover Properties of Epoxy Resin | [等离子体表面阶跃型梯度硅沉积对环氧树脂闪络性能的影响]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37(9): 2377-2387. DOI:10.19595/j.cnki.1000-6753.tces.210476
    13. Yan, J., Liang, G., Lian, H. et al. Improving the surface flashover performance of epoxy resin by plasma treatment: A comparison of fluorination and silicon deposition under different modes. Plasma Science and Technology, 2021, 23(11): 115501. DOI:10.1088/2058-6272/ac15ee
    14. Mei, D., Zhang, S., Tang, J. Special issue on selected papers from HVDP 2020. Plasma Science and Technology, 2021, 23(6): 060101. DOI:10.1088/2058-6272/ac02ab

    Other cited types(0)

Catalog

    Article views (964) PDF downloads (354) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return