Advanced Search+
Jun WU (吴军), Jian WU (吴健), M T RIETVELD, I HAGGSTROM, Haisheng ZHAO (赵海生), Tong XU (徐彤), Zhengwen XU (许正文). Systematic variation in observing altitude of enhanced ion line by the pump near fifth gyroharmonic[J]. Plasma Science and Technology, 2018, 20(12): 125301. DOI: 10.1088/2058-6272/aadd44
Citation: Jun WU (吴军), Jian WU (吴健), M T RIETVELD, I HAGGSTROM, Haisheng ZHAO (赵海生), Tong XU (徐彤), Zhengwen XU (许正文). Systematic variation in observing altitude of enhanced ion line by the pump near fifth gyroharmonic[J]. Plasma Science and Technology, 2018, 20(12): 125301. DOI: 10.1088/2058-6272/aadd44

Systematic variation in observing altitude of enhanced ion line by the pump near fifth gyroharmonic

More Information
  • Received Date: May 22, 2018
  • The observation of ultra high frequency radar during an ionospheric experiment carrying out at the European Incoherent Scatter Scientific Association, demonstrates a systematic variation in the altitude of the pump enhanced ion line, which is quite remarkably dependent on the pump frequency, that is, when the pump frequency sweeps above the fifth gyroharmonic, the altitude of the enhanced ion line is ~3 to ~6 km lower than that at the pump frequency very close to the fifth gyroharmonic. The analysis shows that the systematic variation in the altitude of the pump enhanced ion line is principally dependent on the enhanced electron temperature, although the changes in the profile of the electron density brought about by the ionospheric heating are not independent of those systematic altitude variations.
  • [1]
    Silin V P 1965 Sov. Phys.—JETP 21 1127
    [2]
    DuBois D F and Goldman M V 1965 Phys. Rev. Lett. 14 544
    [3]
    DuBois D F and Goldman M V 1967 Phys. Rev. 164 207
    [4]
    Perkins F W and Flick J 1971 Phys. Fluids 14 2012
    [5]
    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565
    [6]
    Drake J F et al 1974 Phys. Fluids 17 778
    [7]
    Perkins F W, Oberman C and Valeo E J 1974 J. Geophys. Res. 79 1478
    [8]
    Kuo Y Y and Fejer J A 1972 Phys. Rev. Lett. 29 1667
    [9]
    Kuo S P and Cheo B R 1978 Phys. Fluids 21 1753
    [10]
    Fejer J A 1979 Rev. Geophys. 17 135
    [11]
    Stubbe P, Kohl H and Rietveld M T 1992 J. Geophys. Res. 97 6285
    [12]
    Kohl H et al 1993 J. Atmos. Terr. Phys. 55 601
    [13]
    Wu J, Wu J and Xue Y R 2006 Int. J. Comput. Fluid Dyn. 20 491
    [14]
    Wu J, Wu J and La Hoz C 2007 Chin. Phys. 16 558
    [15]
    Gao X L et al 2013 Phys. Plasmas 20 072902
    [16]
    Gao X L et al 2014 Astrophys. J. 780 56
    [17]
    He P et al 2016 Astrophys. J. 827 64
    [18]
    Ke Y G et al 2017 Phys. Plasmas 24 012108
    [19]
    Carlson H C, Gordon W E and Showen R L 1972 J. Geophys. Res. 77 1242
    [20]
    Gordon W E and Carlson H C Jr 1974 Radio Sci. 9 1041
    [21]
    Kantor I J 1974 J. Geophys. Res. 79 199
    [22]
    Hagfors T et al 1983 Radio Sci. 18 861
    [23]
    DuBois D F, Rose H A and Russell D 1988 Phys. Rev. Lett. 61 2209
    [24]
    Nordling J A et al 1988 Radio Sci. 23 809
    [25]
    Stubbe P et al 1985 J. Atmos. Terr. Phys. 47 1151
    [26]
    Bezzerides B and Weinstock J 1972 Phys. Rev. Lett. 28 481
    [27]
    Weinstock J and Bezzerides B 1972 J. Geophys. Res. 77 761
    [28]
    DuBois D F and Goldman M V 1972 Phys. Fluids 15 919
    [29]
    Jones T B et al 1986 J. Atmos. Terr. Phys. 48 1027
    [30]
    Djuth F T et al 1994 J. Geophys. Res. 99 333
    [31]
    Ashrafi M, Kosch M J and Honary F 2006 Adv. Space Res. 38 2645
    [32]
    Wu J et al 2017 Plasma Sci. Technol. 19 125303
    [33]
    Wu J et al 2018 J. Geophys. Res. 123 918
    [34]
    Blagoveshchenskaya N F et al 2014 J. Geophys. Res. 119 10483
    [35]
    Kohl H et al 1987 Radio Sci. 22 655
    [36]
    Rietveld M T et al 1993 J. Atmos. Terr. Phys. 55 577
    [37]
    Rietveld M T et al 2016 Radio Sci. 51 1533
    [38]
    Rishbeth H and Van Eyken A P 1993 J. Atmos. Terr. Phys. 55 525
    [39]
    Lehtinen M S and Huuskonen A 1996 J. Atmos. Terr. Phys. 58 435
    [40]
    Wu J, Wu J and Xu Z W 2016 Plasma Sci. Technol. 18 890
    [41]
    Wu J et al 2017 J. Geophys. Res. 122 1277
    [42]
    Gurevich A V 2007 Phys.—Usp. 50 1091
    [43]
    Bilitza D and Reinisch B W 2008 Adv. Space Res. 42 599
    [44]
    Liu L B et al 2007 J. Geophys. Res. 112 A06307
    [45]
    Rishbeth H and Garriott O K 1969 Introduction to Ionospheric Physics (New York: Academic)
  • Related Articles

    [1]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [2]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [3]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Hualei ZHANG (张华磊), Liming HE (何立明), Jinlu YU (于锦禄), Wentao QI (祁文涛), Gaocheng CHEN (陈高成). Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame[J]. Plasma Science and Technology, 2018, 20(2): 24001-024001. DOI: 10.1088/2058-6272/aa9850
    [6]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [7]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [8]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [9]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [10]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12

Catalog

    Article views (146) PDF downloads (277) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return