Advanced Search+
Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82
Citation: Shuheng HU (胡淑恒), Xinghao LIU (刘行浩), Zimu XU (许子牧), Jiaquan WANG (汪家权), Yunxia LI (李云霞), Jie SHEN (沈洁), Yan LAN (兰彦), Cheng CHENG (程诚). Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma[J]. Plasma Science and Technology, 2019, 21(1): 15501-015501. DOI: 10.1088/2058-6272/aade82

Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma

Funds: This work was financially supported by National Natural Science Foundation of China (Nos. 51777206 and 51541807), Natural Science Foundation of Anhui Province (Nos. 1708085MB47 and 1708085MA13), Foundation of Anhui Province Key Laboratory of Medical Physics and Technology (No. LMPT2017Y7BP0U1581), Doctoral Fund of Ministry of Education of China (No. 2017M612058), Specialized Research Fund for the Doctoral Program of Hefei University of Tech- nology (Nos. JZ2016HGBZ0768, JZ2016HGBZ0769, and JZ2017HGBZ0944).
More Information
  • Received Date: April 01, 2018
  • A typical quinolones antibiotic ciprofloxacin (CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species (RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and pH values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers (isopropanol and CCl4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP. Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS (H2O2 and O3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization (+)-mass spectroscopy, and the possible degradation mechanism were presented.
  • [1]
    Bu Q W et al 2013 J. Hazard. Mater. 262 189
    [2]
    Trovó A G et al 2008 J. Photochem. Photobiol. A 198 215
    [3]
    Esplugas S et al 2007 J. Hazard. Mater. 149 631
    [4]
    Watkinson A J et al 2009 Sci. Total Environ. 407 2711
    [5]
    Watkinson A J, Murby E J and Costanzo S D 2007 Water Res. 41 4164
    [6]
    Gao P P et al 2012 Water Res. 46 2355
    [7]
    Dodd M C et al 2005 Environ. Sci. Technol. 39 7065
    [8]
    Kümmerer K and Henninger A 2003 Clin. Microbiol. Infect. 9 1203
    [9]
    Calabrese E J and Baldwin L A 2003 Annu. Rev. Pharmacol. Toxicol. 43 175
    [10]
    De Bel E et al 2009 Chemosphere 77 291
    [11]
    Ghaly M Y et al 2001 Waste Manage. 21 41
    [12]
    Pi Y et al 2014 Chin. Sci. Bull. 59 2618
    [13]
    Liu C et al 2012 Water Res. 46 5235
    [14]
    Mahdi-Ahmed M and Chiron S 2014 J. Hazard. Mater. 265 41
    [15]
    van Doorslaer X et al 2013 Appl. Catal. B 138-139 333
    [16]
    Rice R G 1996 Ozone Sci. Eng. 18 477
    [17]
    Devi P, Das U and Dalai A K 2016 Sci. Total Environ. 571 643
    [18]
    de Souza Santos L V, Meireles A M and Lange L C 2015 J. Environ. Manage. 154 8
    [19]
    Aziz K H H et al 2017 Chem. Eng. J. 313 1033
    [20]
    Magureanu M et al 2010 Water Res. 44 3445
    [21]
    Reddy P M K et al 2013 Chem. Eng. J. 217 41
    [22]
    Zhou Z et al 2015 Chemosphere 119 S95
    [23]
    Gad-Allah T A, Ali M E M and Badawy M I 2011 J. Hazard. Mater. 186 751
    [24]
    An T C et al 2010 Appl. Catal. B 94 288
    [25]
    Shen J et al 2015 Plasma Process. Polym. 12 252
    [26]
    Zhang H et al 2015 Sci. Rep. 5 10031
    [27]
    Zhang Z L et al 2017 Plasma Chem. Plasma Process. 37 415
    [28]
    Joshi A A et al 1995 J. Hazard. Mater. 41 3
    [29]
    Zhang Z L et al 2018 Plasma Sci. Technol. 20 044009
    [30]
    Wang Y Y et al 2017 Plasma Sci. Technol. 19 025503
    [31]
    Lin J J et al 2002 Appl. Catal. B 39 157
    [32]
    Reddy P M K and Subrahmanyam C 2012 Ind. Eng. Chem. Res. 51 11097
    [33]
    Wang S H and Zhou S Q 2011 J. Hazard. Mater. 185 77
    [34]
    Olszewski P et al 2014 J. Hazard. Mater. 279 60
    [35]
    Wang T C et al 2016 J. Hazard. Mater. 302 65
    [36]
    Zhang G Y et al 2017 J. Hazard. Mater. 323 719
    [37]
    Zhu D et al 2014 Chemosphere 117 506
    [38]
    Rong S P, Sun Y B and Zhao Z H 2014 Chin. Chem. Lett. 25 187
    [39]
    Guo Z B et al 2017 Chem. Eng. J. 307 722
    [40]
    Feng J W et al 2009 J. Hazard. Mater. 164 838
    [41]
    Joshi R P and Thagard S M 2013 Plasma Chem. Plasma Process. 33 17
    [42]
    Chen J Y et al 2017 Sep. Purif. Technol. 179 135
    [43]
    Song W H et al 2008 J. Phys. Chem. A 112 7411
    [44]
    Lu N et al 2013 Chemosphere 91 1266
    [45]
    Francony A and Pétrier C 1996 Ultrason. Sonochem. 3 S77
    [46]
    Haag W R and Yao C C D 1992 Environ. Sci. Technol. 26 1005
    [47]
    Lee M and Oh J 2010 Ultrason. Sonochem. 17 207
    [48]
    Rong S P and Sun Y B 2015 J. Hazard. Mater. 287 317
    [49]
    Sahni M and Locke B R 2006 Ind. Eng. Chem. Res. 45 5819
    [50]
    Schuler R H, Neta P and Fessenden R W 1971 J. Phys. Chem. 75 1654
    [51]
    Boutamine Z, Hamdaoui O and Merouani S 2017 Res. Chem. Intermed. 43 1709
    [52]
    Albini A and Monti S 2003 Chem. Soc. Rev. 32 238
    [53]
    Yahya M S et al 2014 Chemosphere 117 447
    [54]
    Dirany A et al 2012 Environ. Sci. Technol. 46 4074
  • Related Articles

    [1]Chundong HU (胡纯栋), Yahong XIE (谢亚红), Yongjian XU (许永建), Caichao JIANG (蒋才超), Jianglong WEI (韦江龙), Yuming GU (顾玉明), Qinglong CUI (崔庆龙), Lizhen LIANG (梁立振), Shiyong CHEN (陈世勇), Yuanlai XIE (谢远来). Achievement of 1000 s plasma generation of RF source for neutral beam injector[J]. Plasma Science and Technology, 2019, 21(2): 22001-022001. DOI: 10.1088/2058-6272/aaf1e0
    [2]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [3]Yahong XIE (谢亚红), Chundong HU (胡纯栋), Sheng LIU (刘胜), Yuanlai XIE (谢远来), Yongjian XU (许永建), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Peng SHENG (盛鹏), YumingGU(顾玉明), Jun LI (李军), Zhimin LIU (刘智民). R&D progress of high power ion source on EAST-NBI[J]. Plasma Science and Technology, 2018, 20(1): 14023-014023. DOI: 10.1088/2058-6272/aa8c6c
    [4]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [5]HU Chundong (胡纯栋), CHEN Yu (陈宇), XU Yongjian (许永建), YU Ling (于玲), LI Xiang (栗翔), ZHANG Weitang (张为堂), NBI Group. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(11): 1139-1142. DOI: 10.1088/1009-0630/18/11/13
    [6]HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13
    [7]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [8]HU Chundong (胡纯栋) for the NBI team. Achievement of 100 s Long Pulse Neutral Beam Extraction in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(3): 201-203. DOI: 10.1088/1009-0630/15/3/01
    [9]CHEN Wenguang (陈文光), RAO Jun (饶军), LI Bo (李波), LEI Guangjiu (雷光玖), CAO Jianyong (曹建勇), WANG Mingwei (王明伟), KANG Zihua (康自华), FENG Kun (冯鲲), HL-A NBI Group. Technical Design of Arc-Discharge and Deceleration Power Supply for MW Level NBI System on HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 936-940. DOI: 10.1088/1009-0630/14/10/15
    [10]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14
  • Cited by

    Periodical cited type(8)

    1. Zhou, S., Ding, Y.H., Liang, Y. et al. First application of the island divertor configuration in the J-TEXT tokamak. Nuclear Fusion, 2025, 65(1): 016020. DOI:10.1088/1741-4326/ad90f1
    2. Yang, J., Liang, Y., Shi, P. et al. Dynamic characteristics of edge plasma profiles during the opening of edge islands on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(5): 056030. DOI:10.1088/1741-4326/ad37cc
    3. Yang, J., Liang, Y., Wang, N.C. et al. First observation of beta-induced Alfvén eigenmode inside the edge magnetic island on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(2): 024001. DOI:10.1088/1741-4326/ad1788
    4. Zhang, W.-B., Liu, S.-C., Liao, L. et al. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST | [基于超级电容器的充放电电路系统研制及其在 EAST 限制器探针测量中的应用]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(6): 065203. DOI:10.7498/aps.73.20231697
    5. Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d
    6. Chen, Z., Zhu, L., Xu, X. et al. Realization of divertor configuration discharge in J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124008. DOI:10.1088/2058-6272/aca0dc
    7. Liu, S.C., Liao, L., Wei, W.Y. et al. Development and application of limiter Langmuir probe array in EAST. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113162
    8. Wang, N., Song, Z., Liang, Y. et al. Formation of the non-axisymmetric helical current driven by a biased electrode in the scrape-off layer on J-TEXT. Nuclear Fusion, 2019, 59(9): 096047. DOI:10.1088/1741-4326/ab2d03

    Other cited types(0)

Catalog

    Article views (194) PDF downloads (333) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return