Advanced Search+
Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
Citation: Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1

Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer

Funds: This work was financially supported by National Basic Research Program (973 Program) of China under grant number 2012CB921900 and National Natural Science Foundation of China under grant numbers 11274123 and 11304100.
More Information
  • Received Date: June 06, 2018
  • High repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first used to analyze trace elements in copper alloy samples. The 1064 nm output of an acousto- optically Q-switched Nd:YAG laser operated at a pulse repetition rate of 1 kHz was utilized to ablate copper alloy and to form original plasma, spark-discharge was applied to further breakdown the ablated samples and enhance the emission of the laser-induced plasma. A compact multichannel fiber spectrometer was used to analyze the plasma emission under non- gated operation mode. Under the assistance of high repetition rate spark discharge, the plasma emission was able to be improved significantly. The determined limits of the detection of lead and aluminum were 15.5 ppm and 1.9 ppm by HRR LA-SIBS, respectively, which were 11 and 6 folds better than that determined by HRR LIBS under the same laser-ablation condition. This work demonstrates the feasibility of using fiber spectrometer to analyze plasma emission under non-gated operation mode and the possibility of building a portable HRR LA-SIBS system for rapid elemental analysis of copper alloys and other solid samples.
  • [1]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [2]
    Wang Z et al 2014 Front. Phys. 9 419
    [3]
    Xin Y et al 2016 Front. Phys. 11 115207
    [4]
    Yao S C et al 2015 Plasma Sci. Technol. 17 938
    [5]
    Li X W et al 2015 Plasma Sci. Technol. 17 621
    [6]
    Meng D S et al 2015 Plasma Sci. Technol. 17 632
    [7]
    Sirven J B et al 2017 J. Anal. At. Spectrom. 32 1868
    [8]
    Li Y et al 2017 Plasma Sci. Technol. 19 025501
    [9]
    Melessanaki K et al 2002 Appl. Surf. Sci. 197–198 156
    [10]
    Giakoumaki A, Melessanaki K and Anglos D 2007 Anal. Bioanal. Chem. 387 749
    [11]
    Moncayo S et al 2016 Talanta 158 185
    [12]
    Zheng P C et al 2015 Plasma Sci. Technol. 17 664
    [13]
    Cremers D A et al 2012 Appl. Spectrosc. 66 250
    [14]
    Chinni R C et al 2009 Appl. Spectrosc. 63 1238
    [15]
    Multari R A et al 2010 Appl. Spectrosc. 64 750
    [16]
    Morel S et al 2003 Appl. Opt. 42 6184
    [17]
    Hilbk-Kortenbruck F et al 2001 Spectrochim. Acta B 56 933
    [18]
    Laville S et al 2009 Spectrochim. Acta B 64 347
    [19]
    Li C M et al 2016 Opt. Express 24 7850
    [20]
    Kang J et al 2017 J. Anal. At. Spectrom. 32 2292
    [21]
    Babushok V I et al 2006 Spectrochim. Acta B 61 999
    [22]
    Nicolodelli G et al 2015 Spectrochim. Acta B 111 23
    [23]
    Scaffidi J et al 2003 Appl. Opt. 42 6099
    [24]
    Nassef O A and Elsayed-Ali H E 2005 Spectrochim. Acta B 60 1564
    [25]
    Chen Y Q et al 2010 J. Anal. At. Spectrom. 25 1969
    [26]
    Zhou W D et al 2012 Appl. Opt. 51 B42
    [27]
    Li K X et al 2010 J. Anal. At. Spectrom. 25 1475
    [28]
    Zhou W D et al 2010 Opt. Express 18 2573
    [29]
    Vini? M L and Ivkovi? M R 2014 Hem. Ind. 68 381
    [30]
    Hou Z Y et al 2014 Opt. Express 22 12909
    [31]
    He X Y et al 2018 Spectrochim. Acta B 141 34
    [32]
    Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559
    [33]
    Voigtman E 2008 Spectrochim. Acta B 63 154
    [34]
    Wang X et al 2015 Plasma Sci. Technol. 17 914
    [35]
    Lei W Q et al 2009 Spectrochim. Acta B 64 891
    [36]
    Po?ízka P et al 2014 Rev. Sci. Instrum. 85 073104
  • Related Articles

    [1]Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4
    [2]Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b
    [3]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [4]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [5]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [6]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [7]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [8]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [9]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Rapid Thermal-Hydraulic Analysis and Design Optimization of ITER Upper ELM Coils[J]. Plasma Science and Technology, 2014, 16(10): 978-983. DOI: 10.1088/1009-0630/16/10/14
    [10]MAO Yangwu(毛样武), GUO Beibei(郭贝贝), NIE Dunwei(聂敦伟), Domenico MOMBELLO. Tarnish Testing of Copper-Based Alloys Coated with SiO 2 -Like Films by PECVD[J]. Plasma Science and Technology, 2014, 16(5): 486-490. DOI: 10.1088/1009-0630/16/5/08
  • Cited by

    Periodical cited type(6)

    1. Choi, G.J.. Kinetic theory of island geodesic acoustic mode. Physics of Plasmas, 2024, 31(4): 042304. DOI:10.1063/5.0201623
    2. Ponomarenko, A., Gusev, V., Kiselev, E. et al. The investigation of edge-localized modes on the Globus-M2 tokamak using Doppler backscattering. Nuclear Fusion, 2024, 64(2): 022001. DOI:10.1088/1741-4326/ad0ead
    3. Zhang, Y., Jiang, M., Guo, Z.B. et al. Nonlocal phase coupling in turbulence spreading across the magnetic island. Physics of Plasmas, 2023, 30(10): 102303. DOI:10.1063/5.0164796
    4. Li, H., Li, J., Wang, Z. et al. Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas. Chinese Physics B, 2022, 31(6): 065207. DOI:10.1088/1674-1056/ac6011
    5. Wu, N., Cheng, J., Yan, L.W. et al. Effects of a coherent mode on the redistribution of divertor particle flux in HL-2A H-mode plasmas. Plasma Physics and Controlled Fusion, 2021, 63(7): 075002. DOI:10.1088/1361-6587/abf672
    6. Hahm, T.S., Kim, Y.J., Diamond, P.H. et al. Anisotropic e × B shearing rate in a magnetic island. Physics of Plasmas, 2021, 28(2): 022302. DOI:10.1063/5.0036583

    Other cited types(0)

Catalog

    Article views (144) PDF downloads (243) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return