Advanced Search+
Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
Citation: Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369

High-power microwave propagation properties in the argon plasma array

Funds: This work is supported by the National High Technology Research and Development Program of China (Grant No. 2015AA0392).
More Information
  • Received Date: May 20, 2018
  • The argon plasma induced by the L-/C-band high-power microwave (HPM) is investigated theoretically and experimentally. Influences of the microwave power, pulse width, polarization and the plasma electron density on the protection performance of the plasma array against HPM are studied. The results show that the effect of HPM is caused by energy accumulation, with the gas breakdown emerging only after a short time. The attenuation of the wave by the plasma array with the tubes off can reach approximately 23 dB at 1.3 GHz. It can also be obtained that the protection performance of the plasma array against the TE wave is better than that against the TM one. The plasma array shows better protection performance in the L-band than in the C-band. In addition, the attenuation of 5.6 GHz HPM can reach 30 dB when the tubes are turned on in the experiment. The research shows that the plasma array has protection ability against HPM.
  • [1]
    MacDonald A D 1996 Microwave Breakdown in Gases (New York: Wiley)
    [2]
    Hidaka Y et al 2009 Phys. Plasmas 16 055702
    [3]
    Yang Y M, Yuan C W and Qian B L 2012 Phys. Plasmas 19 122101
    [4]
    Boeuf J, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett. 104 015002
    [5]
    Baeva M et al 2000 Plasma Sources Sci. Technol. 9 128
    [6]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [7]
    Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
    [8]
    Starodubtsev M V 2010 Radiophys. Quantum Electron. 53 338
    [9]
    Yuan Z C and Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)
    [10]
    Li Z G et al 2017 Acta Phys. Sin. 66 195202 (in Chinese)
    [11]
    Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733
    [12]
    Destler W W et al 1991 J. Appl. Phys. 69 6313
    [13]
    Singh et al 1992 J. Appl. Phys. 72 1707
    [14]
    Xu Y X et al 2013 Plasma Sources Sci. Technol. 23 015002
    [15]
    Sakai O et al 2013 Plasma Phys. Control. Fusion. 59 014042
    [16]
    Cook A et al 2011 Phys. Plasmas 18 100704
    [17]
    L?fgren M et al 1991 Phys. Fluids B 3 3528
    [18]
    Zhao P X et al 2011 Phys. Plasmas 18 10211
    [19]
    He W, Liu X H and Xian R C 2013 Plasma Sci. Technol. 15 335
    [20]
    Jordan U et al 2006 IEEE Trans. Plasma Sci. 34 421
    [21]
    Cheng L, Shi J M and Xu B 2012 Plasma Sci. Technol. 14 37
  • Related Articles

    [1]Kang AN (安康), Liangxian CHEN (陈良贤), Jinlong LIU (刘金龙), Yun ZHAO (赵云), Xiongbo YAN (闫雄伯), Chenyi HUA (化称意), Jianchao GUO (郭建超), Junjun WEI (魏俊俊), Lifu HEI (黑立富), Chengming LI (李成明), Fanxiu LU (吕反修). The effect of substrate holder size on the electric field and discharge plasma on diamond-film formation at high deposition rates during MPCVD[J]. Plasma Science and Technology, 2017, 19(9): 95505-095505. DOI: 10.1088/2058-6272/aa7458
    [2]Ling ZHANG (张玲), Guo CHEN (陈果), Zhibing HE (何智兵), Xing AI (艾星), Jinglin HUANG (黄景林), Lei LIU (刘磊), Yongjian TANG (唐永建), Xiaoshan HE (何小珊). Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma[J]. Plasma Science and Technology, 2017, 19(7): 75505-075505. DOI: 10.1088/2058-6272/aa6618
    [3]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [4]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [5]PENG Shi (彭释), LI Lingjun (李灵均), LI Wei (李炜), WANG Chaoliang (王超梁), GUO Ying (郭颖), SHI Jianjun (石建军), ZHANG Jing (张菁). Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(4): 337-341. DOI: 10.1088/1009-0630/18/4/01
    [6]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [7]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [8]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [9]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [10]H. Martínez, O. Flores, J. C. Poveda, B. Campillo. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions[J]. Plasma Science and Technology, 2012, 14(4): 303-311. DOI: 10.1088/1009-0630/14/4/07
  • Cited by

    Periodical cited type(3)

    1. Zhang, X., Wang, J., Wang, F. et al. Particle Simulation of Positive Streamer Discharges on Surface of DC Transmission Conductors with Coating Materials. IEEE Transactions on Plasma Science, 2022, 50(10): 3751-3759. DOI:10.1109/TPS.2022.3202648
    2. Kim, S.-J., Kim, S., Son, B.-K. et al. Ozone-Generation Panel with an Atmospheric Dielectric Barrier Discharge. Journal of the Korean Physical Society, 2020, 77(7): 572-581. DOI:10.3938/jkps.77.572
    3. Lee, K.-H., Kim, S., Jo, H. et al. Plasma skincare device based on floating electrode dielectric barrier discharge. Plasma Science and Technology, 2019, 21(12): 125403. DOI:10.1088/2058-6272/ab428a

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (245) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return