Advanced Search+
Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
Citation: Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7

Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature

Funds: This work was supported by National Natural Science Foundation of China (Nos. 51506171 and 51675415), National Natural Science Foundation of China for Key Program (No. 51335009), National Key Research and Development Program of China (No. 2017YFD0700200) and the joint research fund between Tokushima University and Xi’an Jiaotong University.
More Information
  • Received Date: August 29, 2018
  • A remote open-path laser-induced breakdown spectroscopy (LIBS) system was designed and studied in the present work for the purpose of combining the LIBS technique with the steel production line. In this system, the relatively simple configuration and optics were employed to measure the steel samples at a remote distance and a hot sample temperature. The system has obtained a robustness for the deviation of the sample position because of the open-path and all- optical structure. The measurement was carried out at different sample temperatures by placing the samples in a muffle furnace with a window in the front door. The results show that the intensity of the spectral lines increased as the sample temperature increased. The influence of the sample temperature on the quantitative analysis of manganese in the steel samples was investigated by measuring ten standard steel samples at different temperatures. Three samples were selected as the test sample for the simulation measurement. The results show that, at the sample temperature of 500°C, the average relative error of prediction is 3.1% and the average relative standard deviation is 7.7%, respectively.
  • [1]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin: Springer)
    [2]
    Deguchi Y 2011 Industrial Applications of Laser Diagnostics (Boca Raton: CRS Press, Taylor & Francis)
    [3]
    Balzer H et al 2006 Anal. Bioanal. Chem. 385 225
    [4]
    Balzer H et al 2006 Anal. Bioanal. Chem. 385 234
    [5]
    Meinhardt C et al 2016 Spectrochim. Acta B 123 171
    [6]
    Gruber J et al 2001 Spectrochim. Acta B 56 685
    [7]
    Boué-Bigne F 2016 Spectrochim. Acta B 119 25
    [8]
    Noll R et al 2001 Spectrochim. Acta B 56 637
    [9]
    Sun L X et al 2015 Spectrochim. Acta B 112 40
    [10]
    Palanco S, Conesa S and Laserna J J 2004 J. Anal. At. Spectrom. 19 462
    [11]
    Hubmer G, Kitzberger R and M?rwald K 2006 Anal. Bioanal. Chem. 385 219
    [12]
    Palanco S, Baena J M and Laserna J J 2002 Spectrochim. Acta B 57 591
    [13]
    Sun L X et al 2011 Chin. J. Lasers 38 0915002 (in Chinese)
    [14]
    Sun L X et al 2011 Chin. J. Sci. Instrum. 32 2602–8 (in Chinese)
    [15]
    Sun L X et al 2013 Adv. Mater. Res. 694–697 1260
    [16]
    Peter L, Sturm V and Noll R 2003 Appl. Opt. 42 6199
    [17]
    Aragón C, Aguilera J A and Campos J 1993 Appl. Spectrosc. 47 606
    [18]
    Kolmhofer P J et al 2015 Spectrochim. Acta B 106 67
    [19]
    Sanghapi H K et al 2016 Spectrochim. Acta B 115 40
    [20]
    Vrenegor J, Noll R and Sturm V 2005 Spectrochim. Acta B 60 1083
    [21]
    Boué-Bigne F 2008 Spectrochim. Acta B 63 1122
    [22]
    NIST Standard Reference Database 78 (https://doi.org/10. 18434/T4W30F)
    [23]
    Fujimoto T 2004 Plasma Spectroscopy (Oxford: Oxford University Press)
    [24]
    Song C, Gao X and Shao Y 2016 Optik 127 3979
    [25]
    Noll R et al 2008 Spectrochim. Acta B 63 1159
    [26]
    Wang Z Z et al 2017 Appl. Spectrosc. 71 2187
    [27]
    Yao S C et al 2011 Appl. Surf. Sci. 257 3103
    [28]
    Noda M et al 2002 Spectrochim. Acta B 57 701
    [29]
    López-Moreno C, Palanco S and Laserna J J 2005 Spectrochim. Acta B 60 1034
    [30]
    Cui M C et al 2018 Spectrochim. Acta B 142 14
    [31]
    Cui M C et al 2018 Appl. Spectrosc. ASP803943
    [32]
    Miller J N and Miller J C 2006 Statistics and Chemometrics for Analytical Chemistry 6th edn (Englewood Cliffs, NJ: Prentice-Hall)
    [33]
    Hao Z et al 2014 J. Anal. At. Spectrom. 29 2309
    [34]
    Freeman J R et al 2014 Spectrochim. Acta B 102 36
    [35]
    Zaytsev S M et al 2014 J. Anal. At. Spectrom. 29 1417
  • Cited by

    Periodical cited type(21)

    1. Xiong, S., Yang, N., Guan, H. et al. Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2024.343496
    2. He, Y., Ke, C., Wen, Q. et al. Automatic focusing remote laser induced breakdown spectroscopy analysis of trace elements in steel using support vector machine regression. IEEE Transactions on Instrumentation and Measurement, 2025. DOI:10.1109/TIM.2025.3550229
    3. Xiong, S., Liao, T., Chi, Y. et al. A strategy to reduce spectral intensity uncertainty and predicted content uncertainty of low and medium alloy steel elements. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106919
    4. Li, S., Zheng, R., Deguchi, Y. et al. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys. Plasma Science and Technology, 2023, 25(4): 045510. DOI:10.1088/2058-6272/aca5f4
    5. Zhang, D., Zhang, Z., Zhang, M. et al. Portable nanosecond laser for handheld laser-induced breakdown spectroscopy instruments. Optical Engineering, 2023, 62(3): 36102. DOI:10.1117/1.OE.62.3.036102
    6. Guo, M., Huang, Z., Wang, J. et al. origin Identification of Three Kinds of Dry-cured Ham Based on Laser-induced Breakdown Spectroscopy Technology Combined with Machine Learning Algorithm | [基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(10): 279-285. DOI:10.16429/j.1009-7848.2022.10.030
    7. Lei, B.-Y., Xu, B.-P., Wang, Y.-S. et al. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples | [非平坦样品激光诱导等离子体光谱特性研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(10): 3024-3030. DOI:10.3964/j.issn.1000-0593(2022)10-3024-07
    8. Cui, M., Guo, H., Chi, Y. et al. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106398
    9. Zhang, D., Feng, Z., Wei, K. et al. Remote Laser-induced Breakdown Spectroscopy and Its Application (Invited) | [远程激光诱导击穿光谱技术与应用(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2021, 50(10): 1030001. DOI:10.3788/gzxb20215010.1030001
    10. Cui, M., Deguchi, Y., Li, G. et al. Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106210
    11. Chang, F., Yang, J., Lu, H. et al. A LIBS quantitative analysis method for samples with changing temperature: Via functional data analysis. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1007-1017. DOI:10.1039/d0ja00514b
    12. Wang, Y., Bu, Y., Cai, Y. et al. Detection of electrolyte elements in human blood based on laser-induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2602525
    13. FUGANE, Y., KASHIWAKURA, S., WAGATSUMA, K. Control of laser focal point by using an electrically tunable lens in laser-induced plasma optical emission spectrometry. ISIJ International, 2020, 60(12): 2845-2850. DOI:10.2355/isijinternational.ISIJINT-2020-170
    14. Cui, M., Deguchi, Y., Wang, Z. et al. Signal Improvement for Underwater Measurement of Metal Samples Using Collinear Long-Short Double-Pulse Laser Induced Breakdown Spectroscopy. Frontiers in Physics, 2020. DOI:10.3389/fphy.2020.00237
    15. Rong, K., Wang, Z., Hu, R. et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074010. DOI:10.1088/2058-6272/ab7fbc
    16. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    17. Cui, M., Deguchi, Y., Wang, Z. et al. Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105873
    18. Cui, M., Deguchi, Y., Yao, C. et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105839
    19. Wang, Z., Deguchi, Y., Shiou, F. et al. Feasibility investigation for online elemental monitoring of iron and steel manufacturing processes using laser-induced breakdown spectroscopy. ISIJ International, 2020, 60(5): 971-978. DOI:10.2355/isijinternational.ISIJINT-2019-317
    20. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873
    21. Wang, Y., Bu, Y., Wu, F. et al. Research on LIBS quantitative analysis of heavy metal concentration in polluted water-based on Fourier self-deconvolution method. Proceedings of SPIE - The International Society for Optical Engineering, 2019. DOI:10.1117/12.2544699

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (281) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return