Citation: | Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7 |
[1] |
Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin: Springer)
|
[2] |
Deguchi Y 2011 Industrial Applications of Laser Diagnostics (Boca Raton: CRS Press, Taylor & Francis)
|
[3] |
Balzer H et al 2006 Anal. Bioanal. Chem. 385 225
|
[4] |
Balzer H et al 2006 Anal. Bioanal. Chem. 385 234
|
[5] |
Meinhardt C et al 2016 Spectrochim. Acta B 123 171
|
[6] |
Gruber J et al 2001 Spectrochim. Acta B 56 685
|
[7] |
Boué-Bigne F 2016 Spectrochim. Acta B 119 25
|
[8] |
Noll R et al 2001 Spectrochim. Acta B 56 637
|
[9] |
Sun L X et al 2015 Spectrochim. Acta B 112 40
|
[10] |
Palanco S, Conesa S and Laserna J J 2004 J. Anal. At. Spectrom. 19 462
|
[11] |
Hubmer G, Kitzberger R and M?rwald K 2006 Anal. Bioanal. Chem. 385 219
|
[12] |
Palanco S, Baena J M and Laserna J J 2002 Spectrochim. Acta B 57 591
|
[13] |
Sun L X et al 2011 Chin. J. Lasers 38 0915002 (in Chinese)
|
[14] |
Sun L X et al 2011 Chin. J. Sci. Instrum. 32 2602–8 (in Chinese)
|
[15] |
Sun L X et al 2013 Adv. Mater. Res. 694–697 1260
|
[16] |
Peter L, Sturm V and Noll R 2003 Appl. Opt. 42 6199
|
[17] |
Aragón C, Aguilera J A and Campos J 1993 Appl. Spectrosc. 47 606
|
[18] |
Kolmhofer P J et al 2015 Spectrochim. Acta B 106 67
|
[19] |
Sanghapi H K et al 2016 Spectrochim. Acta B 115 40
|
[20] |
Vrenegor J, Noll R and Sturm V 2005 Spectrochim. Acta B 60 1083
|
[21] |
Boué-Bigne F 2008 Spectrochim. Acta B 63 1122
|
[22] |
NIST Standard Reference Database 78 (https://doi.org/10. 18434/T4W30F)
|
[23] |
Fujimoto T 2004 Plasma Spectroscopy (Oxford: Oxford University Press)
|
[24] |
Song C, Gao X and Shao Y 2016 Optik 127 3979
|
[25] |
Noll R et al 2008 Spectrochim. Acta B 63 1159
|
[26] |
Wang Z Z et al 2017 Appl. Spectrosc. 71 2187
|
[27] |
Yao S C et al 2011 Appl. Surf. Sci. 257 3103
|
[28] |
Noda M et al 2002 Spectrochim. Acta B 57 701
|
[29] |
López-Moreno C, Palanco S and Laserna J J 2005 Spectrochim. Acta B 60 1034
|
[30] |
Cui M C et al 2018 Spectrochim. Acta B 142 14
|
[31] |
Cui M C et al 2018 Appl. Spectrosc. ASP803943
|
[32] |
Miller J N and Miller J C 2006 Statistics and Chemometrics for Analytical Chemistry 6th edn (Englewood Cliffs, NJ: Prentice-Hall)
|
[33] |
Hao Z et al 2014 J. Anal. At. Spectrom. 29 2309
|
[34] |
Freeman J R et al 2014 Spectrochim. Acta B 102 36
|
[35] |
Zaytsev S M et al 2014 J. Anal. At. Spectrom. 29 1417
|
1. | Xiong, S., Yang, N., Guan, H. et al. Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2024.343496 | |
2. | He, Y., Ke, C., Wen, Q. et al. Automatic focusing remote laser induced breakdown spectroscopy analysis of trace elements in steel using support vector machine regression. IEEE Transactions on Instrumentation and Measurement, 2025. DOI:10.1109/TIM.2025.3550229 | |
3. | Xiong, S., Liao, T., Chi, Y. et al. A strategy to reduce spectral intensity uncertainty and predicted content uncertainty of low and medium alloy steel elements. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106919 | |
4. | Li, S., Zheng, R., Deguchi, Y. et al. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys. Plasma Science and Technology, 2023, 25(4): 045510. DOI:10.1088/2058-6272/aca5f4 | |
5. | Zhang, D., Zhang, Z., Zhang, M. et al. Portable nanosecond laser for handheld laser-induced breakdown spectroscopy instruments. Optical Engineering, 2023, 62(3): 36102. DOI:10.1117/1.OE.62.3.036102 | |
6. | Guo, M., Huang, Z., Wang, J. et al. origin Identification of Three Kinds of Dry-cured Ham Based on Laser-induced Breakdown Spectroscopy Technology Combined with Machine Learning Algorithm | [基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(10): 279-285. DOI:10.16429/j.1009-7848.2022.10.030 | |
7. | Lei, B.-Y., Xu, B.-P., Wang, Y.-S. et al. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples | [非平坦样品激光诱导等离子体光谱特性研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(10): 3024-3030. DOI:10.3964/j.issn.1000-0593(2022)10-3024-07 | |
8. | Cui, M., Guo, H., Chi, Y. et al. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106398 | |
9. | Zhang, D., Feng, Z., Wei, K. et al. Remote Laser-induced Breakdown Spectroscopy and Its Application (Invited) | [远程激光诱导击穿光谱技术与应用(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2021, 50(10): 1030001. DOI:10.3788/gzxb20215010.1030001 | |
10. | Cui, M., Deguchi, Y., Li, G. et al. Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106210 | |
11. | Chang, F., Yang, J., Lu, H. et al. A LIBS quantitative analysis method for samples with changing temperature: Via functional data analysis. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1007-1017. DOI:10.1039/d0ja00514b | |
12. | Wang, Y., Bu, Y., Cai, Y. et al. Detection of electrolyte elements in human blood based on laser-induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2602525 | |
13. | FUGANE, Y., KASHIWAKURA, S., WAGATSUMA, K. Control of laser focal point by using an electrically tunable lens in laser-induced plasma optical emission spectrometry. ISIJ International, 2020, 60(12): 2845-2850. DOI:10.2355/isijinternational.ISIJINT-2020-170 | |
14. | Cui, M., Deguchi, Y., Wang, Z. et al. Signal Improvement for Underwater Measurement of Metal Samples Using Collinear Long-Short Double-Pulse Laser Induced Breakdown Spectroscopy. Frontiers in Physics, 2020. DOI:10.3389/fphy.2020.00237 | |
15. | Rong, K., Wang, Z., Hu, R. et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074010. DOI:10.1088/2058-6272/ab7fbc | |
16. | Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48 | |
17. | Cui, M., Deguchi, Y., Wang, Z. et al. Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105873 | |
18. | Cui, M., Deguchi, Y., Yao, C. et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105839 | |
19. | Wang, Z., Deguchi, Y., Shiou, F. et al. Feasibility investigation for online elemental monitoring of iron and steel manufacturing processes using laser-induced breakdown spectroscopy. ISIJ International, 2020, 60(5): 971-978. DOI:10.2355/isijinternational.ISIJINT-2019-317 | |
20. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 | |
21. | Wang, Y., Bu, Y., Wu, F. et al. Research on LIBS quantitative analysis of heavy metal concentration in polluted water-based on Fourier self-deconvolution method. Proceedings of SPIE - The International Society for Optical Engineering, 2019. DOI:10.1117/12.2544699 |