Advanced Search+
Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
Citation: Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1

Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air

Funds: We acknowledge support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11674124); Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC); and Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1605).
More Information
  • Received Date: July 29, 2018
  • In double-pulse laser-induced breakdown spectroscopy (DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na (I) lines (589.0 nm and 589.6 nm) and one Ca (I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature (22 °C) and three higher initial sample temperatures (Ts =100 °C, 200°C, and 250 °C). The inter-pulse delay time ranges from -250 ps to 250 ps. The inter-pulse delay time and the sample temperature strongly influence the spectral intensity, and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0ps (single-pulse LIBS), the enhancement ratio is approximately 2.5 at Ts=200 °C compared with that obtained at Ts=22 °C. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at Ts=200 °C compared with that obtained at Ts=22 °C. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.
  • [1]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Appl. Phys. B 108 867
    [2]
    Anglos D, Couris S and Fotakis C 1997 Appl. Spectrosc. 51 1025
    [3]
    Pandhija S et al 2010 Appl. Phys. B 98 231
    [4]
    Knight A K et al 2000 Appl. Spectrosc. 54 331
    [5]
    Baudelet M et al 2006 J. Appl. Phys. 99 084701
    [6]
    Burakov V et al 2008 Spectrochim. Acta B 63 19
    [7]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481
    [8]
    Tavassoli S H and Khalaji M 2008 J. Appl. Phys. 103 083118
    [9]
    Semerok A and Dutouquet C 2004 Thin Solid Films 453–454 501
    [10]
    Rashid B et al 2011 Phys. Plasmas 18 073301
    [11]
    Singh K S and Sharma A K 2016 Phys. Plasmas 23 122104
    [12]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [13]
    Hou Z Y et al 2013 Opt. Express 21 15974
    [14]
    Popov A M, Colao F and Fantoni R 2010 J. Anal. At. Spectrom. 25 837
    [15]
    Wang Y et al 2016 Phys. Plasmas 23 113105
    [16]
    Zhou W D et al 2013 J. Anal. At. Spectrom. 28 702
    [17]
    Liu L et al 2015 Opt. Express 23 15047
    [18]
    Liu L et al 2014 Opt. Express 22 7686
    [19]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [20]
    De Giacomo A et al 2013 Anal. Chem. 85 10180
    [21]
    Aguirre M A et al 2013 Spectrochim. Acta B 79–80 88
    [22]
    Goueguel C et al 2010 J. Anal. At. Spectrom. 25 635
    [23]
    Benedetti P A et al 2005 Spectrochim. Acta B 60 1392
    [24]
    He Y et al 2018 Sensors 18 1526
    [25]
    ?tvrtní?ková T et al 2008 Spectrochim. Acta B 63 42
    [26]
    Scott R and Strasheim A 1970 Spectrochim. Acta B 25 311
    [27]
    Cremers D A et al 1984 Appl. Spectrosc. 38 721
    [28]
    Singha S, Hu Z and Cordon R J 2008 J. Appl. Phys. 104 113520
    [29]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
    [30]
    Pi?on V et al 2008 Spectrochim. Acta B 63 1006
    [31]
    Penczak J et al 2014 Spectrochim. Acta B 97 34
    [32]
    Mukamel S et al 1999 Acc. Chem. Res. 32 145
    [33]
    Chen A M et al 2010 Appl. Surf. Sci. 257 1678
    [34]
    Li S C et al 2015 Appl. Surf. Sci. 355 681
    [35]
    Qi Y et al 2014 Appl. Surf. Sci. 317 252
    [36]
    No?l S, Axente E and Hermann J 2009 Appl. Surf. Sci. 255 9738
    [37]
    No?l S and Hermann J 2009 Appl. Phys. Lett. 94 053120
    [38]
    Harilal S S, Diwakar P K and Hassanein A 2013 Appl. Phys. Lett. 103 041102
    [39]
    Qi H X et al 2014 J. Anal. At. Spectrom. 29 1105
    [40]
    Chen A M et al 2013 Phys. Plasmas 20 103110
    [41]
    Guo J et al 2012 Optics Commun. 285 1895
    [42]
    Zhang D et al 2017 Opt. Laser Technol. 96 117
    [43]
    Ahamer C M and Pedarnig J D 2018 Spectrochim. Acta B 148 23
    [44]
    Cao Z T et al 2018 Spectrochim. Acta B 141 63
    [45]
    Chen A M et al 2015 Opt. Express 23 24648
    [46]
    Liu X et al 2013 Opt. Express 21 A704
    [47]
    Schiffern J T, Doerr D W and Alexander D R 2007 Spectrochim. Acta B 62 1412
    [48]
    Hou Z Y et al 2014 Opt. Express 22 12909
    [49]
    Guo L B et al 2011 Opt. Express 19 14067
    [50]
    Guo L B et al 2012 Opt. Express 20 1436
    [51]
    Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356
    [52]
    Scaffidi J et al 2004 Appl. Opt. 43 2786
    [53]
    Darbani S M R et al 2014 J. Eur. Opt. Soc. Rapid Publ. 9 14058
    [54]
    Palanco S et al 1999 J. Anal. At. Spectrom. 14 1883
    [55]
    Yang F et al 2017 Opt. Laser Technol. 93 194
    [56]
    Hanson C, Phongikaroon S and Scott J R 2014 Spectrochim. Acta B 97 79
    [57]
    Franklin S R and Thareja R K 2004 Appl. Surf. Sci. 222 293
    [58]
    Zhigilei L V et al 2003 Chem. Rev. 103 321
    [59]
    Silfvast W T 1996 Laser Fundamentals (Cambridge: Cambridge University Press)
    [60]
    Alfarraj B A et al 2017 Appl. Spectrosc. 71 640
    [61]
    Hou J J et al 2017 J. Anal. At. Spectrom. 32 1519
    [62]
    Yi R X et al 2016 J. Anal. At. Spectrom. 31 961
    [63]
    Li J M et al 2015 Opt. Lett. 40 5224
    [64]
    Thorstensen J and Foss S E 2012 J. Appl. Phys. 112 103514
    [65]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 497
    [66]
    Eschlb?ck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [67]
    Gautier C et al 2005 Spectrochim. Acta B 60 265
    [68]
    D?ring S et al 2013 Appl. Phys. A 112 623
    [69]
    Cristoforetti G et al 2004 Spectrochim. Acta B 59 1907
    [70]
    St-Onge L, Detalle V and Sabsabi M 2002 Spectrochim. Acta B 57 121
    [71]
    Sattmann R, Sturm V and Noll R 1995 J. Phys. D: Appl. Phys. 28 2181
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Article views (155) PDF downloads (206) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return