Advanced Search+
Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875
Citation: Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875

Mechanisms and efficient elimination approaches of self-absorption in LIBS

Funds: This work is supported by National Key R&D Program of China (2017YFA0304203), Changjiang Scholars and Inno-vative Research Team in University of Ministry of Education of China (IRT13076), National Natural Science Foundation of China (NSFC) (Nos. 61475093, 61875108, 61775125), and Major Special Science and Technology Projects in Shanxi Province (MD2016-01).
More Information
  • Received Date: August 24, 2018
  • Laser-induced breakdown spectroscopy (LIBS) is a promising analytical spectroscopy technology based on spectroscopic analysis of the radiation emitted by laser-produced plasma. However, for quantitative analysis by LIBS, the so-called self-absorption effects on the spectral lines, which affect plasma characteristics, emission line shapes, calibration curves, etc, can no longer be neglected. Hence, understanding and determining the self-absorption effects are of utmost importance to LIBS research. The purpose of this review is to provide a global overview of self-absorption in LIBS on the issues of experimental observations and adverse effects, physical mechanisms, correction or elimination approaches, and utilizations in the past century. We believe that better understanding and effective solving the self-absorption effect will further enhance the development and maturity of LIBS.
  • [1]
    Gaft M et al 2008 Spectrochim. Acta B 63 1177
    [2]
    Torrisi L, Caridi F and Giuffrida L 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 2285
    [3]
    Yao S C et al 2011 Appl. Surf. Sci. 257 3103
    [4]
    Yu J et al 2012 Front. Phys. 7 649
    [5]
    Wang Z et al 2012 Spectrochim. Acta B 68 58
    [6]
    Wang Z et al 2012 Front. Phys. 7 708
    [7]
    Hai R et al 2013 Spectrochim. Acta B 87 147
    [8]
    Wang Z et al 2014 Front. Phys. 9 419
    [9]
    Zhao Y et al 2016 Front. Phys. 11 114211
    [10]
    Cowan R D and Dieke G H 1948 Rev. Mod. Phys. 20 418
    [11]
    Li J M et al 2015 Opt. Lett. 40 5224
    [12]
    Wood R W 1926 Phil. Mag. 2 876
    [13]
    Sibaiya L 1939 Proc. Indian Acad. Sci. A 9 219
    [14]
    Leis F et al 1989 Microchim. Acta 98 185
    [15]
    Surmick D M and Parigger C G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115701
    [16]
    Sherbini A M E et al 2013 Nat. Sci. 5 501
    [17]
    Hermann J et al 2014 Spectrochim. Acta B 100 189
    [18]
    Parigger C G, Surmick D M and Gautam G 2017 J. Phys.: Conf. Ser. 810 012012
    [19]
    Konjevi? N 1999 Phys. Rep. 316 339
    [20]
    Grant K J, Paul G L and O’Neill J A 1991 Appl. Spectrosc. 45 701
    [21]
    Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
    [22]
    St-Onge L et al 2004 J. Pharm. Biomed. Anal. 36 277
    [23]
    Wang Z et al 2011 J. Anal. At. Spectrom. 26 2289
    [24]
    Zaytsev S M et al 2014 J. Anal. At. Spectrom. 29 1417
    [25]
    Yao S C et al 2015 Energy Fuels 29 1257
    [26]
    Kolmhofer P J et al 2015 Spectrochim. Acta B 106 67
    [27]
    Grifoni E et al 2016 Spectrochim. Acta B 124 40
    [28]
    Aragón C and Aguilera J A 2014 J. Quant. Spectrosc. Radiat. Transfer 149 90
    [29]
    Aragón C and Aguilera J A 2015 Spectrochim. Acta B 110 124
    [30]
    Hermann J, Boulmer-Leborgne C and Hong D 1998 J. Appl. Phys. 83 691
    [31]
    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
    [32]
    Hermann J et al 2018 Spectrochim. Acta B 144 82
    [33]
    Su M G et al 2017 Sci. Rep. 7 45212
    [34]
    Tallents G J 1978 J. Phys. B: At. Mol. Phys. 11 L157
    [35]
    El Sherbini A M, Hegazy H and El Sherbini T M 2006 Spectrochim. Acta B 61 532
    [36]
    El Sherbini A M et al 2010 Spectrochim. Acta B 65 1041
    [37]
    Aguilera J A and Aragón C 2008 Spectrochim. Acta B 63 784
    [38]
    Yi R X et al 2016 J. Anal. At. Spectrom. 31 961
    [39]
    Gudimenko E, Milosavljevi? V and Daniels S 2012 Opt. Express 20 12699
    [40]
    Tang Y et al 2018 Opt. Express 26 12121
    [41]
    Gornushkin I B et al 1999 Spectrochim. Acta B 54 491
    [42]
    Player M A, Watson J and De Freitas J M O 2000 Influence of self-absorption on the performance of laser-induced breakdown spectroscopy (LIBS) Symp. on Applied Photonics (Glasgow) (United Kingdom: SPIE)
    [43]
    Aguilera J A, Bengoechea J and Aragón C 2003 Spectrochim. Acta B 58 221
    [44]
    Aragón C, Pe?alba F and Aguilera J A 2005 Spectrochim. Acta B 60 879
    [45]
    Alfarraj B A et al 2017 Appl. Spectrosc. 71 640
    [46]
    El Sherbini A M et al 2005 Spectrochim. Acta B 60 1573
    [47]
    Shirvani-Mahdavi H et al 2014 Appl. Phys. B 117 823
    [48]
    Mansour S A M 2015 Opt. Photonics J. 5 54857
    [49]
    Bredice F et al 2006 Spectrochim. Acta B 61 1294
    [50]
    Bredice F O et al 2010 Appl. Spectrosc. 64 320
    [51]
    Díaz Pace D M, D’Angelo C A and Bertuccelli G 2011 Appl. Spectrosc. 65 1202
    [52]
    Díaz Pace D M, D’Angelo C A and Bertuccelli G 2012 IEEE Trans. Plasma Sci. 40 898
    [53]
    Sun L X and Yu H B 2009 Talanta 79 388
    [54]
    Ramezanian Z, Darbani S M R and Majd A E 2017 Appl. Opt. 56 6917
    [55]
    De Oliveira Borges F et al 2018 J. Anal. At. Spectrom. 33 629
    [56]
    Shakeel H et al 2017 Phys. Plasmas 24 063516
    [57]
    Hsu L J, Stephens D and Livk I 2010 QMOM-CFD model development for an Idealised pipe gibbsite precipitator Chemeca 2010 Conf. (Adelaide) (Australia: Adelaide Hilton)
    [58]
    Allen C W 1973 Astrophysical Quantities 3rd edn (London: Athlone)
    [59]
    Shore B W and Menzel D H 1968 Principles of Atomic Spectra (New York: Wiley)
    [60]
    Hanson C, Phongikaroon S and Scott J R 2014 Spectrochim. Acta B 97 79
    [61]
    D’Angelo C A et al 2015 J. Quant. Spectrosc. Radiat. Transfer 164 89
    [62]
    Hou J J et al 2017 J. Anal. At. Spectrom. 32 1519
    [63]
    Hou J J et al 2017 Opt. Express 25 23024
    [64]
    Aragón C, Aguilera J A and Pe?alba F 1999 Appl. Spectrosc. 53 1259
    [65]
    Sakka T, Nakajima T and Ogata Y H 2002 J. Appl. Phys. 92 2296
    [66]
    Amamou H et al 2002 J. Quant. Spectrosc. Radiat. Transfer 75 747
    [67]
    Gornushkin I B et al 2001 Spectrochim. Acta B 56 1769
    [68]
    Aragón C, Bengoechea J and Aguilera J A 2001 Spectrochim. Acta B 56 619
    [69]
    Lazic V et al 2001 Spectrochim. Acta B 56 807
    [70]
    Amamou H et al 2003 J. Quant. Spectrosc. Radiat. Transfer 77 365
    [71]
    Bulajic D et al 2002 Spectrochim. Acta B 57 339
    [72]
    Rezaei F, Karimi P and Tavassoli S H 2014 Appl. Phys. B 114 591
    [73]
    Dong J et al 2015 J. Anal. At. Spectrom. 30 1336
    [74]
    Yang J H et al 2018 Appl. Spectrosc. 72 129
    [75]
    Huddleston R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic)
    [76]
    Radtke R and Gunter K 1986 Contrib. Plasma Phys. 26 143
    [77]
    Kobilarov R, Konjevi? N and Popovi? M V 1989 Phys. Rev. A 40 3871
    [78]
    Moon H Y et al 2009 Spectrochim. Acta B 64 702
    [79]
    Burger M, Sko?i? M and Bukvi? S 2014 Spectrochim. Acta B 101 51
    [80]
    Irons F E 1979 J. Quant. Spectrosc. Radiat. Transfer 22 1
    [81]
    Irons F E 1980 J. Quant. Spectrosc. Radiat. Transfer 24 119
    [82]
    Drawin H W and Emard F 1973 Beitr. Plasma Phys. 13 143
    [83]
    Hannachi R et al 2007 Influence of alkaline salts on radiative properties of laser induced water plasma 18th Int. Symp. Plasma Chemistry ISPC 2007 (Kyoto) p 1152
    [84]
    Hannachi R et al 2008 Appl. Phys. A 92 933
    [85]
    Habib A A M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2146
    [86]
    Horňá?ková M et al 2012 Pre-study of silicon and aluminum containing materials for further zeolites CF-LIBS analysis 2012 WDS′12 Proc. of Contributed Papers: II. WDS vol 2012 (Prague) p 134
    [87]
    Hao Z Q et al 2016 Opt. Express 24 26521
    [88]
    Fishman I S, Il’in G G and Salakhov M K 1995 Spectrochim. Acta B 50 1165
    [89]
    Gornushkin I B et al 2004 Appl. Spectrosc. 58 1023
    [90]
    Karabourniotis D, Ribiere M and Cheron B G 2008 Appl. Phys. Lett. 93 041501
    [91]
    El Sherbini A M 2007 Spectrosc. Lett. 40 643
    [92]
    Bredice F et al 2007 Spectrochim. Acta B 62 1237
    [93]
    Cristoforetti G et al 2010 Spectrochim. Acta B 65 86
    [94]
    Cristoforetti G, Tognoni E and Gizzi L A 2013 Spectrochim. Acta B 90 1
    [95]
    Cristoforetti G and Tognoni E 2013 Spectrochim. Acta B 79–80 63
    [96]
    Hou J J et al 2018 J. Quant. Spectrosc. Radiat. Transfer 213 143
  • Related Articles

    [1]Wei WANG, Yao LI, Zhaoquan CHEN, Sisi LI, Yi FENG, Zhi ZHENG, Dezheng YANG, Yue LIU. One-step direct ammonia synthesis by pulse-modulated microwave plasma at atmospheric pressure[J]. Plasma Science and Technology, 2025, 27(4): 044014. DOI: 10.1088/2058-6272/adc065
    [2]Xucheng WANG, Shuhan GAO, Yuantao ZHANG. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium–oxygen admixtures[J]. Plasma Science and Technology, 2022, 24(8): 085401. DOI: 10.1088/2058-6272/ac67bf
    [3]Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
    [4]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [5]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [6]ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
    [7]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [8]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11
    [9]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14
    [10]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10
  • Cited by

    Periodical cited type(2)

    1. Gao, C., Kang, Z., Gong, D. et al. Novel method for identifying the stages of discharge underwater based on impedance change characteristic. Plasma Science and Technology, 2024, 26(4): 045503. DOI:10.1088/2058-6272/ad0d56
    2. Li, J., Liu, K., Zhang, L. et al. On electro-acoustic characteristics of a marine broadband sparker for seismic exploration. Journal of Oceanology and Limnology, 2024. DOI:10.1007/s00343-023-3131-4

    Other cited types(0)

Catalog

    Article views (198) PDF downloads (420) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return