Advanced Search+
Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1
Citation: Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1

Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification

Funds: The authors gratefully acknowledge financial support from the Joint Funds of National Natural Science Foundation of China (No. U1462105).
More Information
  • Received Date: August 23, 2018
  • The classification of spatial characteristics and discharge modes of dielectric barrier discharge (DBD) are gaining increasing attention in industrial applications, especially in the field of surface treatment of materials. In this work, gray level histogram (GLH) and Fourier energy spectrum based on the digital image processing technology are applied to investigate the spatial structure and discharge mode of mesh-plate DBD. The coefficient of variation (CV) is calculated to describe the uniformity of the discharge. The results show that the discharge mode of mesh-plate DBD changes from periodic discharge to filamentary discharge when the applied voltage increases from 11–15 kV. Moreover, a more regular spatial structure is obtained under lower applied voltages during the discharge process. It is also found that the apertures of mesh electrodes which are below 1mm have smaller values of CV compared to plate electrodes, indicating more uniform discharge. Finally, polypropylene is treated by mesh-plate DBD for surface modification. The hydrophilicity is significantly improved as the water contact angle decreased by 64°, and the dyeing depth is also enhanced.
  • [1]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [2]
    Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D: Appl. Phys. 20 1421
    [3]
    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53
    [4]
    Lu N et al 2017 Top. Catal. 60 855
    [5]
    Lu N, Luo P, Guo Y, Shang K, Zhang X, Li J and Wu Y 2016 IEEE Trans. Plasma Sci. 44 3052–9
    [6]
    Xia Y et al 2017 Int. J. Hydrogen Energy 42 22776
    [7]
    Di L B et al 2016 Plasma Sci. Technol. 18 544
    [8]
    Xiao Z H et al 2017 Plasma Sci. Technol. 19 064009
    [9]
    Huang F M et al 2017 Plasma Sci. Technol. 19 045504
    [10]
    Ji P H, Qu G Z and Li J 2013 Plasma Sci. Technol. 15 1059
    [11]
    Qu G Z et al 2014 Plasma Sci. Technol. 16 608
    [12]
    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
    [13]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
    [14]
    Chiang M H et al 2010 IEEE Trans. Plasma Sci. 38 1489
    [15]
    Li R X et al 2004 Chem. Lett. 33 412
    [16]
    Chavadeja S, Dulyalaksananon W and Suttikul T 2016 Chem. Eng. Process.: Process Intensif. 107 127
    [17]
    Suttiku T and Chavadej C 2017 Ind. Eng. Chem. Res. 56 12547
    [18]
    Fang Z et al 2007 J. Phys. D: Appl. Phys. 40 1401
    [19]
    Wang X X et al 2006 Plasma Sources Sci. Technol. 15 845
    [20]
    Yao S et al 2004 AIChE J. 50 1901
    [21]
    Golubovskii Y B et al 2004 J. Phys. D: Appl. Phys. 37 1346
    [22]
    Martin S et al 2004 Surf. Coat. Technol. 177–178 693
    [23]
    Fang Z et al 2012 Vacuum 86 1305
    [24]
    Sawada Y, Ogawa S and Kogoma M 1995 J. Phys. D: Appl. Phys. 28 1661
    [25]
    Trunec D et al 2004 J. Phys. D:Appl. Phys. 37 2112
    [26]
    Okazaki S et al 1993 J. Phys. D:Appl. Phys. 26 889
    [27]
    Lu N et al 2018 Plasma Chem. Plasma Process. 38 1239
    [28]
    Radu I, Bartnikas R and Wertheimer M R 2005 IEEE Trans. Plasma Sci. 33 280
    [29]
    Bayoda K D, Benard N and Moreau E 2015 J. Phys.: Conf. Ser. 646 012054
    [30]
    Navrátil Z et al 2006 Plasma Sources Sci. Technol. 15 8
    [31]
    ?imek M et al 2018 Plasma Sources Sci. Technol. 27 055019
    [32]
    Bierstedt A et al 2015 J. Anal. At. Spectrom. 30 2496
    [33]
    Massines F et al 2003 Surf. Coat. Technol. 174–175 8
    [34]
    Takana H and Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001
    [35]
    Wu Y et al 2012 IEEE Trans. Plasma Sci. 40 1371
    [36]
    Chandra D V S 1998 IEEE Trans. Aerosp. Electron. Syst. 34 1009
    [37]
    Ye Q Z et al 2012 Plasma Sources Sci. Technol. 21 065008
    [38]
    Wu Y F et al 2013 Vacuum 91 28
  • Related Articles

    [1]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [2]Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
    [3]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [4]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [5]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [6]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(12)

    1. Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899
    2. Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf
    3. Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353
    4. Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397
    5. Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583
    6. Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235
    7. Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346
    8. Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822
    9. Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703
    10. Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609
    11. Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856
    12. Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return