Advanced Search+
G KANG, S AN, K KIM, S HONG. An in situ monitoring method for PECVD process equipment condition[J]. Plasma Science and Technology, 2019, 21(6): 64003-064003. DOI: 10.1088/2058-6272/aafb2b
Citation: G KANG, S AN, K KIM, S HONG. An in situ monitoring method for PECVD process equipment condition[J]. Plasma Science and Technology, 2019, 21(6): 64003-064003. DOI: 10.1088/2058-6272/aafb2b

An in situ monitoring method for PECVD process equipment condition

Funds: This work was supported by KEIT (No. 10082395)
More Information
  • Received Date: August 10, 2018
  • A key to successful consistent plasma processing is maintaining a consistent process chamber condition over a certain production period. To alleviate the concern, in situ process monitoring sensors are employed to investigate the plasma chamber conditions of both the deposition step with direct plasma and the cleaning step with a remote plasma system. In situ sensors are optical emission spectroscopy (OES), optical plasma monitoring sensors (OPMS), voltage current probes (VI-probes), and self-plasma OES (SP-OES). During the deposition, we perform the monitoring of a plasma condition associated with the applied RF power via OES, OPMS, and a VI-probe. In the chamber cleaning step using a remote plasma system does not allow plasma monitoring through the sidewall because the plasma is not formed in the process chamber, thus we employed SP-OES to monitor the by-product gas chemistry during the chamber cleaning process step. Successful monitoring results with some useful applications, such as arc detection, part failure detection, and cleaning process chemistry analysis, are presented in this paper. The use of in situ sensors with proper combination can help to understand the plasma process better, to achieve more precise control of plasma processing.
  • [1]
    ITRS 2.0 Publication (http://itrs2.net/itrs-reports.html)
    [2]
    Wohlewend H 2004 ISMI International SEMATECH
    [3]
    Lee C G N, Kanarik K J and Gottscho R A 2014 J. Phys. D: Appl. Phys. 47 273001
    [4]
    Kim T et al 2016 Diam. Relat. Mater. 69 102
    [5]
    Kwon J H et al 2013 Thin Solid Films 531 328
    [6]
    Arshad M Z and Hong S J 2018 Trans. Electr. Electron. Mater. 19 96
    [7]
    Kim K, Winderbaum S and Hameiri Z 2017 Surf. Coat. Technol. 328 204
    [8]
    Jeon K M et al 2011 J. Korean Vac. Soc. 20 86
    [9]
    Jang D B and Hong S J 2018 Trans. Electr. Electron. Mater. 19 21
    [10]
    Lee S et al 2011 Thin Solid Films 519 6683
    [11]
    Lee G et al 2017 Proc. of IEEE Advanced Semiconductor Manufacturing Conf. NY (USA) p 217
    [12]
    Arshad M Z et al 2018 Jpn. J. Appl. Phys. 57 06JF05
    [13]
    Pedersen H et al 2012 Surf. Coat. Technol. 206 4562
  • Related Articles

    [1]Yuwen Yang, bin Li, Jianglong Wei, Lizhen Liang, Yahong Xie, Chundong Hu. Physics design of electron dumps for the beamline of CFEDR advance neutral beam equipment (CANBE)[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcb18
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Wei WANG (汪为), Lanxiang SUN (孙兰香), Peng ZHANG (张鹏), Liming ZHENG (郑黎明), Lifeng QI (齐立峰), Wei DONG (董伟). A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34004-034004. DOI: 10.1088/2058-6272/aae383
    [4]Jianglong WEI (韦江龙), Yahong XIE (谢亚红), Caichao JIANG (蒋才超), Lizhen LIANG (梁立振), Qinglong CUI (崔庆龙), Shiyong CHEN (陈世勇), Yongjian XU (许永建), Yan WANG (王艳), Li ZHANG (张黎), Yuanlai XIE (谢远来), Chundong HU (胡纯栋). Hefei utility negative ions test equipment with RF source: commissioning and first results[J]. Plasma Science and Technology, 2018, 20(12): 125601. DOI: 10.1088/2058-6272/aadc06
    [5]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [6]K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601
    [7]ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14
    [8]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [9]QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14
    [10]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
  • Cited by

    Periodical cited type(13)

    1. Kim, M.H., Jeon, J.E., Hong, S.J. In-Situ Plasma Monitoring Using Multiple Plasma Information in SiO2 Etch Process. IEEE Transactions on Semiconductor Manufacturing, 2025. DOI:10.1109/TSM.2025.3559301
    2. Eom, G.W., Lee, S.H., Park, I.Y. et al. Analysis of Gas Detection Sensitivity of a Self Plasma-Optical Emission Spectrometer Using an N2 and Ar Gas-Mixing Evaluation System. Applied Science and Convergence Technology, 2024, 33(5): 130-134. DOI:10.5757/ASCT.2024.33.5.130
    3. An, S., Choi, J.E., Kang, J.E. et al. Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber. IEEE Transactions on Semiconductor Manufacturing, 2024, 37(2): 207-221. DOI:10.1109/TSM.2024.3365827
    4. Kim, D., Na, S., Kim, H. et al. Methodology for Plasma Diagnosis and Accurate Virtual Measurement Modeling Using Optical Emission Spectroscopy. IEEE Sensors Journal, 2023, 23(8): 8867-8875. DOI:10.1109/JSEN.2023.3251343
    5. Cho, C., Kim, S., Lee, Y. et al. Determination of Plasma Potential Using an Emissive Probe with Floating Potential Method. Materials, 2023, 16(7): 2762. DOI:10.3390/ma16072762
    6. Park, H.K., Song, W.S., Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 2023, 13(3): 559. DOI:10.3390/coatings13030559
    7. Han, C., Koo, Y., Kim, J. et al. Wafer Type Ion Energy Monitoring Sensor for Plasma Diagnosis. Sensors, 2023, 23(5): 2410. DOI:10.3390/s23052410
    8. An, S., Hong, S.J. Spectroscopic Analysis of NF3 Plasmas with Oxygen Additive for PECVD Chamber Cleaning. Coatings, 2023, 13(1): 91. DOI:10.3390/coatings13010091
    9. Lee, Y.J., Kwon, H.J., Seok, Y. et al. IOT-based in situ condition monitoring of semiconductor fabrication equipment for e-maintenance. Journal of Quality in Maintenance Engineering, 2022, 28(4): 736-747. DOI:10.1108/JQME-10-2020-0113
    10. Kim, S.-J., Seong, I.-H., Lee, Y.-S. et al. Development of a High-Linearity Voltage and Current Probe with a Floating Toroidal Coil: Principle, Demonstration, Design Optimization, and Evaluation. Sensors, 2022, 22(15): 5871. DOI:10.3390/s22155871
    11. Kim, J.-H., Koo, Y., Song, W. et al. On‐Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics (Switzerland), 2022, 11(6): 880. DOI:10.3390/electronics11060880
    12. An, S.-R., Choi, J.E., Hong, S.J. In-situ process monitoring for eco-friendly chemical vapor deposition chamber cleaning. Journal of the Korean Physical Society, 2021, 79(11): 1027-1036. DOI:10.1007/s40042-021-00307-8
    13. Lee, Y., Song, W., Hong, S.J. In situ monitoring of plasma ignition step in capacitively coupled plasma systems. Japanese Journal of Applied Physics, 2020, 59(SJ): SJJD02. DOI:10.35848/1347-4065/ab85de

    Other cited types(0)

Catalog

    Article views (199) PDF downloads (1295) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return