Advanced Search+
J KRISTOF, T AOSHIMA, M BLAJAN, K SHIMIZU. Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment[J]. Plasma Science and Technology, 2019, 21(6): 64001-064001. DOI: 10.1088/2058-6272/aafde6
Citation: J KRISTOF, T AOSHIMA, M BLAJAN, K SHIMIZU. Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment[J]. Plasma Science and Technology, 2019, 21(6): 64001-064001. DOI: 10.1088/2058-6272/aafde6

Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment

More Information
  • Received Date: September 25, 2018
  • Human skin is the largest organ and also the main barrier that prevents foreign substances from entering the body. The surface properties of the skin are relevant for transdermal drug delivery and cosmetics. Yucatan micropig skin is used as a substitute for human skin. A microplasma electrode is used for surface modification of the skin epidermal layer of the Yucatan micropig. Microplasma dielectric barrier discharge has a thin dielectric as a barrier (∼50 μm) and a frequency of 25 kHz. The surface properties of the epidermal layer were characterized by the measurement of the contact angle of the water droplet. The effects of different gases such as air, nitrogen, oxygen, helium or argon were compared. The change of the contact angle is temporal and it is returned to its initial state after several hours. Among the gases used for plasma ignition, oxygen and argon were the most effective for skin treatment. The distance of the skin from the electrode and the treatment time played a crucial roles in the increasing water contact angle. Changes of surface atomic concentration were determined by x-ray photoelectron spectroscopy. After microplasma treatment, the oxygen and nitrogen concentration increased at the skin surface.
  • [1]
    Venkatraman S and Gale R 1998 Biomaterials 19 1119
    [2]
    Mane S, Ponrathnam S and Chavan N 2016 Int. J. Polym. Mater. Polym. Biomater. 65 168
    [3]
    Capra P, Musitelli G and Perugini P 2017 Int. J. Cosmet. Sci. 39 393
    [4]
    Reddy R J, Anjum M and Hussain M A 2013 Am. J. Drug Deliv. 1 300
    [5]
    Azarbayjani A F et al 2010 J. Pharm. Pharmacol. 62 770
    [6]
    Uchida T et al 2016 Chem. Pharm. Bull. 64 1597
    [7]
    Idson B 1967 J. Soc. Cosmet. Chem. 18 91
    [8]
    Waters L J et al 2017 J. Pharm. Anal. 7 338
    [9]
    Schott H 1971 J. Pharm. Sci. 60 1893
    [10]
    Ginn M E, Noyes C M and Jungermann E 1968 J. Colloid Interface Sci. 26 146
    [11]
    El Khyat A et al 1996 Skin Res. Technol. 2 91
    [12]
    Mavon A et al 1997 Colloids Surf. B 8 147
    [13]
    Kim J et al 2017 Appl. Sci. 7 1308
    [14]
    Reuter S, von Woedtke T and Weltmann K D 2018 J. Phys. D: Appl. Phys. 51 233001
    [15]
    Emmert S et al 2013 Clin. Plasma Med. 1 24
    [16]
    Ramirez J C et al 2018 Biomed. Opt. Express 9 2168
    [17]
    Abourayana H, Dobbyn P and Dowling D 2018 Plasma Processes Polym. 15 1700141
    [18]
    Athanasopoulos D and Svarnas P 2017 Human stratum corneum epidermis modification by means of atmospheric- pressure cold plasma treatment Proc. of 23th Int. Conf. on Phenomena in Ionized Gases (July 9–14, 2017) (Portugal: Estoril/Lisbon)
    [19]
    Trutwig L et al 2016 Electrode arrangement for forming a dielectric barrier plasma discharge, World Intellectual Property Organization, WO2016037599, Mar. 17 2016
    [20]
    Busse B L et al 2012 Electrode arrangement for dielectrically limited gas discharge, World Intellectual Property Organization, WO2012175066, Dec. 27 2012
    [21]
    Mahrenholz C et al 2016 Device for generating a cold atmospheric pressure plasma, World Intellectual Property Organization, WO2016055654, Apr. 14 2016
    [22]
    Morfill G et al 2017 Electrode assembly and plasma source for generating a non-thermal plasma and method for operating a plasma source, World Intellectual Property Organization, WO2017013211, Jan. 26 2017
    [23]
    Kristof J et al 2017 Biointerphases 12 02B402
    [24]
    Shimizu K et al 2016 J. Phys. D: Appl. Phys. 49 315201
    [25]
    Liu X et al 2018 J. Phys. D: Appl. Phys. 51 075401
    [26]
    Kovalev A E et al 2014 Beilstein J. Nanotechnol. 5 1341
    [27]
    Lin J W and Chang H C 2011 Nucl. Instrum. Methods Phys. Res. B 269 1801
    [28]
    Hillborg H, Sandelin M and Gedde U W 2001 Polymer 42 7349
    [29]
    De Geyter N, Morent R and Leys C 2008 Nucl. Instrum. Methods Phys. Res. B 266 3086
    [30]
    Jokinen V, Suvanto P and Franssila S 2012 Biomicrofluidics 6 016501
    [31]
    Bacharouche J et al 2013 Sens. Actuators A 197 25
    [32]
    Choe C et al 2017 Sci. Rep. 7 15900
    [33]
    Zhang H et al 2015 Sci. Rep. 5 10031
    [34]
    Takai E et al 2012 Plasma Process. Polym. 9 77
    [35]
    Tolouie H et al 2018 Crit. Rev. Food Sci. Nutr. 58 2583–97
    [36]
    Hensel K et al 2015 Biointerphases 10 029515
    [37]
    Attri P et al 2015 Sci. Rep. 5 8221
  • Related Articles

    [1]Shubin CHEN, Shiyu WANG, Anna ZHU, Ruixue WANG. Multiple chemical warfare agent simulant decontamination by self-driven microplasma[J]. Plasma Science and Technology, 2023, 25(11): 114002. DOI: 10.1088/2058-6272/acd32c
    [2]Jiankai LIU (刘建凯), Yuru ZHANG (张钰如), Kai ZHAO (赵凯), Deqi WEN (温德奇), Younian WANG (王友年). Simulations of standing wave effect, stop band effect, and skin effect in large-area very high frequency symmetric capacitive discharges[J]. Plasma Science and Technology, 2021, 23(3): 35401-035401. DOI: 10.1088/2058-6272/abe18f
    [3]Shuqun WU (吴淑群), Yuxiu CHEN (陈玉秀), Minge LIU (刘敏格), Lu YANG (杨璐), Chaohai ZHANG (张潮海), Shaobin LIU (刘少斌). Numerical study on the modulation of THz wave propagation by collisional microplasma photonic crystal[J]. Plasma Science and Technology, 2020, 22(11): 115402. DOI: 10.1088/2058-6272/abb077
    [4]Yanfei CHEN (陈妍菲), Bowen FENG (冯博文), Qing ZHANG (张卿), Ruoyu WANG (王若愚), Kostya (Ken) OSTRIKOV (欧思聪), Xiaoxia ZHONG (钟晓霞). Temperature dependence of pattern transitions on water surface in contact with DC microplasmas[J]. Plasma Science and Technology, 2020, 22(5): 55404-055404. DOI: 10.1088/2058-6272/ab66e9
    [5]Lars TEN BOSCH, Andreas HUBER, Philipp SAUERBIER, Robert KÖHLER, Georg AVRAMIDIS, Wolfgang VIÖL. Effects of newly devised plasma lice comb on human hair[J]. Plasma Science and Technology, 2019, 21(12): 125502. DOI: 10.1088/2058-6272/ab428b
    [6]A V KHLYUSTOVA, N A SIROTKIN, A S KRAYEV, V A TITOV, A V AGAFONOV. Synthesis of MoO3 by glow discharge in contact with water[J]. Plasma Science and Technology, 2019, 21(2): 25505-025505. DOI: 10.1088/2058-6272/aaf02b
    [7]Shuqun WU (吴淑群), Fei WU (武菲), Xueyuan LIU (刘雪原), Wen CHEN (陈文), Chang LIU (刘畅), Chaohai ZHANG (张潮海). Investigation on the characteristics of an atmospheric-pressure microplasma plume confined inside a long capillary tube[J]. Plasma Science and Technology, 2018, 20(10): 105402. DOI: 10.1088/2058-6272/aad082
    [8]NIU Chunping (纽春萍), DING Juwen (丁炬文), YANG Fei (杨飞), DONG Delong (董得龙), RONG Mingzhe (荣命哲), XU Dan (徐丹). The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 460-464. DOI: 10.1088/1009-0630/18/5/02
    [9]Emre SEKER, Mehmet Ali KILICARSLAN, Serdar POLAT, Emre OZKIR, Suat PAT. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?[J]. Plasma Science and Technology, 2016, 18(4): 417-423. DOI: 10.1088/1009-0630/18/4/15
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.
  • Cited by

    Periodical cited type(15)

    1. Liu, Y., Sun, Y., Zhao, H. et al. Particle Evolution of Flexible Pulsed Coplanar Dielectric Barrier Discharge Plasma Sheets and Its Effect on Sterilization. Plasma Processes and Polymers, 2025. DOI:10.1002/ppap.70014
    2. Nie, L., Liu, D., Cheng, H. et al. The state-of-the-art of atmospheric pressure plasma for transdermal drug delivery. Plasma Science and Technology, 2024, 26(4): 043001. DOI:10.1088/2058-6272/ad1044
    3. Tang, X., Zhou, Z., Chen, Y. et al. A pulsed bipolar current-mode power supply with high power factor in a single stage for dielectric barrier discharge application. Circuit World, 2024. DOI:10.1108/CW-06-2023-0138
    4. Maliha, M., Kristof, J., Rimi, S.A. et al. Transdermal administration of adenosine using microplasma and the examination of the effect of microplasma on stratum corneum using infrared spectroscopy. Japanese Journal of Applied Physics, 2023, 62(SL): SL1026. DOI:10.35848/1347-4065/ace6a7
    5. Sun, Y., Zhang, B., Zhao, H. et al. Ionization wave propagation of a surface dielectric barrier discharge with a flexible-structure plasma sheet. Journal of Physics D: Applied Physics, 2023, 56(16): 165205. DOI:10.1088/1361-6463/acbce0
    6. Von Woedtke, T., Laroussi, M., Gherardi, M. Foundations of plasmas for medical applications. Plasma Sources Science and Technology, 2022, 31(5): 054002. DOI:10.1088/1361-6595/ac604f
    7. Metelmann, H.-R., Böttger, K., von Woedtke, T. Cold Plasma Treatment and Aesthetic Medicine. Textbook of Good Clinical Practice in Cold Plasma Therapy, 2022. DOI:10.1007/978-3-030-87857-3_13
    8. Kristof, J., Yokoyama, R., Yahaya, A.G. et al. Absorption of FD-150 into Intestinal Cells by Microplasma. Plasma Medicine, 2022, 12(4): 11-28. DOI:10.1615/PlasmaMed.v12.i4.20
    9. Sun, Y., Zhang, B., Wang, C. et al. Polyimide-Based Flexible Plasma Sheet and Surface Ionization Waves Propagation. Advanced Electronic Materials, 2021, 7(11): 2100369. DOI:10.1002/aelm.202100369
    10. Dascalu, A., Pohoata, V., Shimizu, K. et al. Molecular Species Generated by Surface Dielectric Barrier Discharge Micro-plasma in Small Chambers Enclosing Atmospheric Air and Water Samples. Plasma Chemistry and Plasma Processing, 2021, 41(1): 389-408. DOI:10.1007/s11090-020-10122-x
    11. Ramos, E.A., Lizardi, J.J., Méndez, F. Heating and cooling stages using a doubly conjugate thermal and electric asymptotic analysis between a gel and the stratum corneum. Journal of Physics D: Applied Physics, 2020, 53(45): 455401. DOI:10.1088/1361-6463/aba38e
    12. Von Woedtke, T., Emmert, S., Metelmann, H.-R. et al. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27(7): 070601. DOI:10.1063/5.0008093
    13. Gelker, M., Müller-Goymann, C.C., Viöl, W. Plasma Permeabilization of Human Excised Full-Thickness Skin by μs-and ns-pulsed DBD. Skin Pharmacology and Physiology, 2020, 33(2): 69-76. DOI:10.1159/000505195
    14. Athanasopoulos, D.K., Svarnas, P., Gerakis, A. Cold plasma bullet influence on the water contact angle of human skin surface. Journal of Electrostatics, 2019. DOI:10.1016/j.elstat.2019.103378
    15. Gelker, M., Mrotzek, J., Ichter, A. et al. Influence of pulse characteristics and power density on stratum corneum permeabilization by dielectric barrier discharge. Biochimica et Biophysica Acta - General Subjects, 2019, 1863(10): 1513-1523. DOI:10.1016/j.bbagen.2019.05.014

    Other cited types(0)

Catalog

    Article views (172) PDF downloads (690) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return