Advanced Search+
Mehrdad SHAHMOHAMMADI BENI, Wei HAN (韩伟), K N YU (余君岳). Modeling OH transport phenomena in cold plasma discharges using the level set method[J]. Plasma Science and Technology, 2019, 21(5): 55403-055403. DOI: 10.1088/2058-6272/ab008d
Citation: Mehrdad SHAHMOHAMMADI BENI, Wei HAN (韩伟), K N YU (余君岳). Modeling OH transport phenomena in cold plasma discharges using the level set method[J]. Plasma Science and Technology, 2019, 21(5): 55403-055403. DOI: 10.1088/2058-6272/ab008d

Modeling OH transport phenomena in cold plasma discharges using the level set method

More Information
  • Received Date: September 29, 2018
  • Cold atmospheric plasmas (CAPs) have attracted considerable interest in the field of plasma medicine. Generated reactive species such as hydroxyl (OH) species play an important role in applications of CAPs. Transportation of OH species towards the target and distribution of these OH species in the plasma plume play an important role in the applications of plasma medicine. In the present work, a computational model was built to simulate the transportation and distribution of OH species in CAP discharges, which was based on the level set method to dynamically track the propagation of plasma carrier gas in air. A reaction term was incorporated for the OH species. The OH species tended to diffuse around the main stream of the carrier gas, and thus covered larger radial and axial distances. A CAP discharge onto a skin layer led to the largest accumulation of OH species at the central part of the exposed area. The distribution of OH species on the skin was asymmetric, which agreed with experiments. The computational model itself and the obtained results would be useful for future development of plasma medicine.
  • [1]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [2]
    Park G Y et al 2012 Plasma Sources Sci. Technol. 21 043001
    [3]
    Laroussi M 2015 IEEE Trans. Plasma Sci. 43 703
    [4]
    Lu X et al 2016 Phys. Rep. 630 1
    [5]
    Lu X et al 2014 Phys. Rep. 540 123
    [6]
    Graves D B 2014 Phys. Plasmas 21 080901
    [7]
    Murakami T et al 2013 Plasma Sources Sci. Technol. 22 015003
    [8]
    Ji L F et al 2013 Appl. Phys. Lett. 102 184105
    [9]
    Nam S H et al 2013 J. Appl. Oral Sci. 21 265
    [10]
    Foest R et al 2007 Contrib. Plasma Phys. 47 119
    [11]
    Reuter R et al 2012 Plasma Process. Polym. 9 1116
    [12]
    Murakami T et al 2014 Plasma Sources Sci. Technol. 23 025005
    [13]
    Naidis G V 2014 Plasma Sources Sci. Technol. 23 065014
    [14]
    Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001
    [15]
    Flynn P B et al 2016 Sci. Rep. 6 26320
    [16]
    Naidis G V 2013 Plasma Sources Sci. Technol. 22 035015
    [17]
    Ikawa S, Kitano K and Hamaguchi S 2010 Plasma Process. Polym. 7 33
    [18]
    Laroussi M 2005 Plasma Process. Polym. 2 391
    [19]
    Lee H W et al 2009 J. Endod. 35 587
    [20]
    Laroussi M 2014 Plasma Process. Polym. 11 1138
    [21]
    Kaushik N K et al 2013 Curr. Appl. Phys. 13 176
    [22]
    Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005
    [23]
    Yue Y F, Pei X K and Lu X P 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 541
    [24]
    Keidar M et al 2013 Phys. Plasmas 20 057101
    [25]
    Kim G J et al 2010 Appl. Phys. Lett. 96 021502
    [26]
    Ishaq M, Evans M D M and Ostrikov K 2014 Biochim. Biophys. Acta Mol. Cell Res. 1843 2827
    [27]
    Kaushik N K, Uhm H and Choi E H 2012 Appl. Phys. Lett. 100 084102
    [28]
    Ostrikov K, Neyts E C and Meyyappan M 2013 Adv. Phys. 62 113
    [29]
    Keidar M and Beilis I I 2009 J. Appl. Phys. 106 103304
    [30]
    Lu Q Q et al 2014 Plasma Process. Polym. 11 1028
    [31]
    Xu D H et al 2015 PLoS One 10 e0128205
    [32]
    Cheng X Q et al 2014 J. Phys. D Appl. Phys. 47 335402
    [33]
    Cheng X Q et al 2014 PLoS One 9 e98652
    [34]
    Yan D Y et al 2015 Sci. Rep. 5 18339
    [35]
    Isbary G et al 2010 Br. J. Dermatol. 163 78
    [36]
    Arndt S et al 2013 PLoS One 8 e79325
    [37]
    Noriega E et al 2011 Food Microbiol. 28 1293
    [38]
    Perni S, Kong M G and Prokopovich P 2012 Acta Biomater. 8 1357
    [39]
    Preedy E C et al 2014 Colloids Surf. A Physicochem. Eng. Aspects 460 83
    [40]
    Li Y et al 2017 Sci. Rep. 7 45781
    [41]
    Ishaq M, Evans M and Ostrikov K 2014 Int. J. Cancer 134 1517
    [42]
    Lu X P and Ostrikov K 2018 Appl. Phys. Rev. 5 031102
    [43]
    Schr?der M, Ochoa A and Breitkopf C 2015 Biointerphases 10 029508
    [44]
    Pei X K et al 2014 IEEE Trans. Plasma Sci. 42 1206
    [45]
    Shahmohammadi Beni M and Yu K N 2017 Math. Comput. Appl. 22 24
    [46]
    Shahmohammadi Beni M and Yu K N 2015 Biointerphases 10 041003
    [47]
    Shahmohammadi Beni M and Yu K N 2017 Appl. Sci. 7 578
    [48]
    Olsson E and Kreiss G 2005 J. Comput. Phys. 210 225
    [49]
    Olsson E, Kreiss G and Zahedi S 2007 J. Comput. Phys. 225 785
    [50]
    Shahmohammadi Beni M, Zhao J Y and Yu K N 2018 Ann. Nucl. Energy 113 162
    [51]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [52]
    Liu Y, Ivanov A V and Molina M J 2009 Geophys. Res. Lett. 36 L03816
    [53]
    Thoroddsen S T, Etoh T G and Takehara K 2007 Phys. Fluids 19 042101
    [54]
    Yonemori S and Ono R 2014 J. Phys. D Appl. Phys. 47 125401
    [55]
    Luan P S et al 2017 J. Vac. Sci. Technol. A 35 05C315
  • Related Articles

    [1]Zhe YU (俞哲), Jialin ZHAO (赵嘉琳), Rui LIU (刘蕊), Huijuan CAO (曹慧娟), Pu LIU (刘璞), Zhitao ZHANG (张芝涛). Research on resonance parameters matching based on partitioned operation method of atmospheric pressure plasma reactor array[J]. Plasma Science and Technology, 2019, 21(5): 54004-054004. DOI: 10.1088/2058-6272/aaffa2
    [2]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [3]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), Yuming YAN (严禹明), Hailong ZHAO (赵海龙), N A STROKIN. Spatial charge and compensation method in a whirler[J]. Plasma Science and Technology, 2017, 19(5): 55507-055507. DOI: 10.1088/2058-6272/aa59f4
    [4]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [5]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [6]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [7]LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11
    [8]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [9]WU Yongle (吴永乐), LIANG Juncheng (梁珺成), LIU Jiacheng (柳加成), XIONG Wenjun (熊文俊), YAO Shunhe (姚顺和), GUO Xiaoqing (郭晓清), CHEN Xilin (陈细林), YANG Yuandi (杨元第), YUAN Daqing(袁大庆). Standardization of tritium water by TDCR method[J]. Plasma Science and Technology, 2012, 14(7): 644-646. DOI: 10.1088/1009-0630/14/7/17
    [10]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
  • Cited by

    Periodical cited type(5)

    1. Zhang, X., Ma, X., Li, M. et al. Preparation of nano-silver electromagnetic interference shielding functional coating on PC+ABS plastic via Ar/H2 mixed atmospheric pressure plasma jet. Plasma Processes and Polymers, 2024, 21(3): 2300129. DOI:10.1002/ppap.202300129
    2. Xiang, H., Yue, X., Chu, Y. et al. Rapid Fabrication of N-, Cu-, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorganic Chemistry, 2024. DOI:10.1021/acs.inorgchem.4c03089
    3. Zeng, Z., Qiao, J., Zhang, R. et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3(4): 582-607. DOI:10.1002/smm2.1118
    4. Chang, J., Zhai, H., Hu, Z. et al. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110269
    5. Zhou, Y., Zhang, J., Xia, G. et al. Preparation of N-doped graphite oxide for supercapacitors by NH3cold plasma. Plasma Science and Technology, 2022, 24(4): 044008. DOI:10.1088/2058-6272/ac48e0

    Other cited types(0)

Catalog

    Article views (156) PDF downloads (133) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return