Advanced Search+
Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d
Citation: Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d

Direct impact characteristics of magnesite fragmentation by pulsed discharge in water

Funds: This work is supported by National Natural Science Foundation of China (No. 51607023).
More Information
  • Received Date: November 12, 2018
  • To clarify direct impact characteristics (pressure and position) of middle-grade magnesite fragmentation by pulsed discharge in water, this work uses pressure film to accomplish passive measurement through pulsed discharge experiment and obtain the pressure. The impact position is determined by image analysis of fragmentation product morphology, crack edge and discharge channel. Then, pressure load on magnesite surface is numerically analyzed based on the measured pressure obtained from the film. Results indicate that, at 10 mm discharge gap, the impact pressure increases with the discharge voltage, and the discharge voltage to disintegrate magnesite is −40 kV. The impact position is normally in the boundary among different mineral components. Simulation analysis indicates that, the pressure load applied directly on magnesite surface is approximately 142.5 MPa at −40 kV and greater than the compressive strength of magnesite, thus leading to the fragmentation.
  • [1]
    Santana A N and Peres A E C 2001 Miner. Eng. 14 107
    [2]
    Andres U 2010 Int. J. Miner. Process. 97 31
    [3]
    Woo M A et al 2017 Proc. Eng. 207 311
    [4]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [5]
    Shang K F et al 2017 Plasma Sci. Technol. 19 064017
    [6]
    Andres U 1995 Miner. Process. Extr. Metall. Rev. 14 87
    [7]
    Razavian S M, Rezai B and Irannajad M 2014 Adv. Powder Technol. 25 1672
    [8]
    Wang E, Shi F N and Manlapig E 2012 Int. J. Miner. Process. 112-113 30
    [9]
    Wang E, Shi F N and Manlapig E 2012 Miner. Eng. 27-28 28
    [10]
    Amoussou R I H D T et al 2015 Int. J. Geomate 9 1403
    [11]
    Inoue S et al 2012 Acta Phys. Pol. A 115 1107
    [12]
    Duan C L et al 2015 Miner. Eng. 70 170
    [13]
    Zhao Y M et al 2015 Powder Technol. 269 219
    [14]
    Cao Y et al 2013 J. Phys. Conf. Series 418 012127
    [15]
    Stelmashuk V 2014 Phys. Plasmas 21 010703
    [16]
    Claverie A et al 2014 Rev. Sci. Instrum. 85 063701
    [17]
    Chen W et al 2014 Heat Mass Transfer 50 673
    [18]
    Lu X P et al 2001 Explos. Shock Waves 21 282 (in Chinese)
    [19]
    Lu X P 2007 J. Appl. Phys. 102 063302
    [20]
    Li X D et al 2016 Phys. Plasmas 23 103104
    [21]
    Liu S W et al 2017 Proc. CSEE 37 2807 (in Chinese)
    [22]
    Liu Q et al 2007 High Volt. Eng. 33 59 (in Chinese)
    [23]
    Fujita H et al 2014 J. Appl. Phys. 116 213301
    [24]
    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001
    [25]
    Sun B 2013 Discharge Plasma in Liquid and its Applications (Beijing: Science Press) (in Chinese)
    [26]
    Hwang J G et al 2009 Modeling streamers in transformer oil: the transitional fast 3rd mode streamer Proc. 2009 IEEE 9th Int. Conf. on the Properties and Applications of Dielectric Materials (Harbin China) pp 573-8
    [27]
    Zheng D C et al 2018 Electr. Mach. Control 22 51 (in Chinese)
    [28]
    Kim H et al Reappraisal of pressure distribution induced by ice-structure interaction using high-precision pressure measurement film Int. Conf. and Exhibition of Performance of Ships and Structures in Ice (Banff Canada) pp 191-9 (https://fujifilm.com/products/prescale/prescalefilm/ #features)
    [29]
    GB/T 50266-2013 2013 Standard for Test Methods of Engineering Rock Mass (Beijing: China Planning Press) (in Chinese)
    [30]
    Andres U, Timoshkin I and Soloviev M 2001 Miner. Process. Extr. Metall. 110 149
    [31]
    Leckie F A and Bello D J 2009 Strength and Stiffness Of Engineering Systems (New York: Springer) (https://doi. org/10.1007/978-0-387-49474-6)
    [32]
    Beer F P et al 1992 Mechanics of Materials (New York: McGraw-Hill)
    [33]
    Liu Y et al 2016 Trans. China Electrotech. Soc. 31 71 (in Chinese)
    [34]
    Bluhm H et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 625
  • Related Articles

    [1]Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026
    [2]Min WANG, Qingmei XIAO, Xiaogang WANG, Daoyuan LIU. Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST[J]. Plasma Science and Technology, 2022, 24(1): 015101. DOI: 10.1088/2058-6272/ac320f
    [3]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [4]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [5]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [6]YANG Yu (杨愚), S. MARUYAMA, G. KISS, LI Wei (李伟), JIANG Tao (江涛), LI Bo (李波). Conceptual Design of the ITER Gas Injection System[J]. Plasma Science and Technology, 2013, 15(3): 287-290. DOI: 10.1088/1009-0630/15/3/19
    [7]P Klaywittaphat, T Onjun. Scaling of the density peak with pellet injection in ITER[J]. Plasma Science and Technology, 2012, 14(12): 1035-1040. DOI: 10.1088/1009-0630/14/12/01
    [8]SHENG Zhicai(Cheng-Zhi-Cai-), FU Peng (Fu-Feng-), XU Xiuwei (Hu-Liu-Wei-). Dynamic performance of the ITER reactive power compensation system[J]. Plasma Science and Technology, 2011, 13(5): 637-640.
    [9]KANG Weishan(康伟山), CHEN Jiming(谌继明), WU Jihong(吴继红). Analysis and Optimization of Cooling Channels in ITER Blanket Module[J]. Plasma Science and Technology, 2010, 12(5): 628-631.
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.

Catalog

    Article views (214) PDF downloads (955) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return