Advanced Search+
Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
Citation: Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814

Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge

Funds: This work is supported by National Natural Science Foundation of China (No. 11575066).
More Information
  • Received Date: November 04, 2018
  • A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma. An SDBD plasma reactor based on the double spiral structure is introduced in this paper. To study the discharge mechanism of SDBD, an equivalent circuit model was proposed based on the analysis of the micro-discharge process of SDBD. Matlab/Simulink is used to simulate and compare the voltage–current waves, Lissajous and discharge power with the experimental results. The consistency of the results verifies the validity of the SDBD equivalent circuit model. Maxwell software based on the finite elements method is used to analyze the electrostatic field distribution of the device, which can better explain the relationship between the discharge image and the electrostatic field distribution. The combination of equivalent circuit simulation and electrostatic field simulation can provide better guidance for optimizing a plasma generator. Finally, the device is used to treat PM2.5 and formaldehyde. The test results show that the degradation rate of PM2.5 can reach 78% after 24 min, and formaldehyde is about 31.5% after 10 min of plasma treatment.
  • [1]
    Hall J R et al 1969 J. Appl. Polym. Sci. 13 2085
    [2]
    Leroux F et al 2009 Surf. Coat. Technol. 203 3178
    [3]
    Shimizu T et al 2012 New J. Phys. 14 103028
    [4]
    Byeon J H et al 2010 J. Hazard. Mater. 175 417
    [5]
    Park C W et al 2011 Sep. Purif. Technol. 77 87
    [6]
    Roth J R, Sherman D M and Wilkinson S P 2000 AIAA J. 38 1166
    [7]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [8]
    Lv X G et al 2010 Plasma Sci. Technol. 12 177
    [9]
    Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400
    [10]
    Takaki K et al 2008 Vacuum 83 128
    [11]
    Georghiou G E et al 2005 J. Phys. D: Appl. Phys. 38 R303
    [12]
    Chen Z Y 2003 IEEE Trans. Plasma Sci. 31 511
    [13]
    Flores-Fuentes A et al 2009 IEEE Trans. Plasma Sci. 37 128
    [14]
    Wei L S et al 2017 Plasma Chem. Plasma Process. 38 355
    [15]
    Nassour K et al 2017 IEEE Trans. Ind. Appl. 53 2477
    [16]
    Valdivia-Barrientos R et al 2006 Plasma Sources Sci. Technol. 15 237
    [17]
    Pal U N et al 2010 J. Phys.: Conf. Ser. 208 012142
    [18]
    Fang Z et al 2012 IEEE Trans. Plasma Sci. 40 883
    [19]
    Wang L L et al 2017 Plasma Sci. Technol. 19 035402
    [20]
    Grundmann S and Tropea C 2009 Int. J. Heat Fluid Flow 30 394
    [21]
    Kriegseis J et al 2011 J. Electrostat. 69 302
    [22]
    Fan X et al 2011 J. Hazard. Mater. 196 380
    [23]
    Ding H X et al 2005 J. Phys. D: Appl. Phys. 38 4160
    [24]
    Yao S et al 2006 Plasma Chem. Plasma Process. 26 481
  • Related Articles

    [1]Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51
    [2]Mohamed MOSTAFAOUI, Djilali BENYOUCEF. Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model[J]. Plasma Science and Technology, 2018, 20(9): 95401-095401. DOI: 10.1088/2058-6272/aac3cf
    [3]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [4]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [7]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [8]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [9]HU Miao(胡淼), GUO Yun(郭赟). The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(8): 735-740. DOI: 10.1088/1009-0630/14/8/10
    [10]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08
  • Cited by

    Periodical cited type(6)

    1. Pathak, R.M., Ananthanarasimhan, J., Nandi, S. et al. Investigating Flow-Induced Changes in Coaxial Cylindrical Dielectric Barrier Discharge Using Equivalent Circuit Modelling and Chemical Workbench Simulations. Plasma Chemistry and Plasma Processing, 2025. DOI:10.1007/s11090-025-10545-4
    2. Lv, X., Liu, Y., Guo, C. et al. Study on human brain protection from electromagnetic radiation of mobile phone by plasma. Physics of Plasmas, 2024, 31(8): 083517. DOI:10.1063/5.0212865
    3. Hu, K., Xie, Q., Wang, H. et al. Synergistic catalysis of Cu-CeO2@CA composite film in a circulating DBD plasma system and its effect on ciprofloxacin degradation. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2022.140895
    4. Li, J., Zheng, Z., Cui, X. et al. Decomposition of Naphthalene by Dielectric Barrier Discharge in Conjunction with a Catalyst at Atmospheric Pressure. Catalysts, 2022, 12(7): 740. DOI:10.3390/catal12070740
    5. Hu, K., Song, S., Zhang, H. et al. Degradation of sulfadiazine in a cyclic V-SDBD plasma system: Parameters analysis and degradation pathway. Journal of Environmental Chemical Engineering, 2022, 10(3): 107415. DOI:10.1016/j.jece.2022.107415
    6. Li, T., Yan, H., Yu, S. et al. Experimental investigation on cathode layer of surface dielectric barrier discharge plasma by surface potential measurement. AIP Advances, 2021, 11(10): 105303. DOI:10.1063/5.0054490

    Other cited types(0)

Catalog

    Article views (154) PDF downloads (384) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return