Advanced Search+
Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
Citation: Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35

Magnetic field topology modeling under resonant magnetic perturbations on EAST

Funds: his work is supported by the National Key R&D Program of China (No. 2017YFE0301100), National Natural Science Foundation of China (No. 51828101), the KC Wong Education Foundation, the China Scholarship Council, the NIFS (National Institute for Fusion Science) Collaborative Research Program (NIFS16KNTT042) and JSPS (the Japan Society for the Promotion of Science) Grant-in-aid for Scientific Research (B) 18H01202.
More Information
  • Received Date: November 29, 2018
  • In order to understand the mechanism by which the resonant magnetic perturbation (RMP) mitigates or suppresses the edge-localized mode (ELM), the topological study of the edge magnetic field in ELM mitigation or suppression phase is a critical issue. To model the three-dimensional magnetic field topology superposed RMP on Experimental Advanced Superconducting Tokamak, a numerical model using the field line tracing method for both vacuum and ideal plasma response approximations is proposed. Using the numerical model, the topological change and the penetration depth of the stochastic field lines in the edge magnetic field are studied in an RMP experiment. Comparing profiles of minimum ρ on edge stochastic field lines and the particle flux pattern, the ideal plasma response changes the field line penetration depth while remaining similar profile relative to vacuum approximation. To mitigate and suppress ELM strongly, the deep penetration of RMP fields and topological changes of the edge magnetic field is a key from our modeling.
  • [1]
    Wagner F et al 1982 Phys. Rev. Lett. 49 1408
    [2]
    Zohm H 1996 Plasma Phys. Control. Fusion 38 105
    [3]
    Loarte A et al 2003 Plasma Phys. Control. Fusion 45 1549
    [4]
    Evans T E et al 2006 Nat. Phys. 2 419
    [5]
    Liang Y et al 2007 Phys. Rev. Lett. 98 265004
    [6]
    Kirk A et al 2010 Nucl. Fusion 50 034008
    [7]
    Evans T E et al 2004 Phys. Rev. Lett. 92 235003
    [8]
    Suttrop W et al 2011 Phys. Rev. Lett. 106 225004
    [9]
    Lang P T et al 2013 Nucl. Fusion 53 043004
    [10]
    Ghendrih P, Grosman A and Capes H 1996 Plasma Phys. Control. Fusion 38 1653
    [11]
    Snyder P B and Wilson H R 2003 Plasma Phys. Control. Fusion 45 1671
    [12]
    Wan B N et al 2013 Nucl. Fusion 53 104006
    [13]
    Sun Y et al 2015 Plasma Phys. Control. Fusion 57 045003
    [14]
    Sun Y et al 2017 Nucl. Fusion 57 036007
    [15]
    Sun Y et al 2016 Phys. Rev. Lett. 117 115001
    [16]
    Fitzpatrick R 2014 Phys. Plasmas 21 092513
    [17]
    Reiser D and Tokar M Z 2009 Phys. Plasmas 16 122303
    [18]
    Park J K, Boozer A H and Glasser A H 2007 Phys. Plasmas 14 052110
    [19]
    Liu Y Q et al 2011 Nucl. Fusion 51 083002
    [20]
    Wingen A et al 2015 Plasma Phys. Control. Fusion 57 104006
    [21]
    Seal S K, Hirshman S P, Wingen A, Wilcox R S, Cianciosa M R and Unterberg E A 2016 PARVMEC: an efficient, scalable implementation of the variational moments equilibrium code Proc. 45th Int. Conf. on Parallel Processing - ICPP vol 618, pp 618–27
    [22]
    Orain F et al 2013 Phys. Plasmas 20 102510
    [23]
    Suzuki Y 2017 Plasma Phys. Control. Fusion 59 054008
    [24]
    Bécoulet M et al 2008 Nucl. Fusion 48 024003
    [25]
    Bazzani A et al 1989 Il Nuovo Cimento B 103 659
    [26]
    Grimm R C, Dewar R L and Manickam J 1983 J. Comput. Phys. 49 94
    [27]
    Wingen A, Evans T E and Spatschek K H 2009 Phys. Plasmas 16 042504
    [28]
    Lao L L et al 1985 Nucl. Fusion 25 1611
    [29]
    Schaffer M J et al 2008 Nucl. Fusion 48 024004
    [30]
    Chirikov B V 1979 Phys. Rep. 52 263
    [31]
    Cahyna P, Nardon E and JET EFDA Contributors 2011 J. Nucl. Mater. 415 S927
    [32]
    Wingen A et al 2010 Phys. Rev. Lett. 104 175001
    [33]
    Rack M et al 2014 Nucl. Fusion 54 064012
    [34]
    Jia M et al 2016 Plasma Phys. Control. Fusion 58 055010
  • Related Articles

    [1]Wenjun YANG (杨文军), Guoqiang LI (李国强), Yanqiang HU (胡砚强), Songlin LIU (刘松林), Hang LI (李航), Xiang GAO (高翔). Effects of kinetic profiles on neutron wall loading distribution in CFETR[J]. Plasma Science and Technology, 2017, 19(8): 85102-085102. DOI: 10.1088/2058-6272/aa6795
    [2]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [3]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), YUAN Guoliang (袁国梁), YANG Qingwei (杨青巍), YIN Zejie (阴泽杰). The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER[J]. Plasma Science and Technology, 2013, 15(5): 417-419. DOI: 10.1088/1009-0630/15/5/04
    [4]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
    [5]HE Chao(何超), HUA Hui(华辉), LI Xiangqing(李湘庆), WANG Bo(汪波). β-Decay of Light Neutron-Rich Nuclei[J]. Plasma Science and Technology, 2012, 14(7): 610-613. DOI: 10.1088/1009-0630/14/7/10
    [6]LI Shuang(李双), FENG Shengqin (冯笙琴). Gluon Saturation Model with Geometric Scaling for Net-Baryon Distributions in Relativistic Heavy Ion Collisions[J]. Plasma Science and Technology, 2012, 14(7): 598-602. DOI: 10.1088/1009-0630/14/7/07
    [7]XIAO Jun (肖军), YE Yanlin (叶沿林), You Haibo(游海波), YANG Zaihong (杨再宏), CAO Zhongxin(曹中鑫), JIANG Dongxing(江栋兴), ZHENG Tao(郑涛), HUA hui(华辉), Li Zhihuan(李智焕), GE Yucheng(葛俞成), et al. The Experimental Study of Two-Neutron Correlation in 8He+[J]. Plasma Science and Technology, 2012, 14(6): 539-542. DOI: 10.1088/1009-0630/14/6/24
    [8]You Haibo(游海波)), Song Yushou(宋玉收)), Xiao Jun(肖军)), Ye Yanlin(叶沿林)). Study of Neutron Cross Talk Rejection Based on Testing Experiment and Simulation[J]. Plasma Science and Technology, 2012, 14(6): 473-477. DOI: 10.1088/1009-0630/14/6/08
    [9]LI Xiangqing(李湘庆), HUA Hui(华辉), JIANG Dongxing(江栋兴), YE Yanlin(叶沿林). Study of Isotopic Distribution of the Projectile-like Fragments Produced in the 17,18N + 197Au Reactions at 33MeV/u[J]. Plasma Science and Technology, 2012, 14(6): 455-459. DOI: 10.1088/1009-0630/14/6/04
    [10]XU Yan (许妍), LIU Guangzhou(刘广洲), WU Yaorui(吴姚睿), ZHU Mingfeng(朱明枫), YU Zi(喻孜), WANG Hongyan(王红岩), ZHAO Enguang(赵恩广). The Effects of δ Meson on the Neutron Star Cooling[J]. Plasma Science and Technology, 2012, 14(5): 375-378. DOI: 10.1088/1009-0630/14/5/06
  • Cited by

    Periodical cited type(9)

    1. Yu, X., Su, X., Wang, Z. et al. A review of uranium (U) elemental detection methods. Analytical Methods, 2025. DOI:10.1039/d4ay02115k
    2. Skutnik, S.E., Sobel, P.W., Swinney, M.W. et al. Survey of prospective techniques for molten salt reactor feed monitoring. Annals of Nuclear Energy, 2024. DOI:10.1016/j.anucene.2024.110796
    3. Lee, Y., Foster, R.I., Kim, H. et al. Data Fusion of Acoustic and Optical Emission from Laser-Induced Plasma for In Situ Measurement of Rare Earth Elements in Molten LiCl-KCl. Analytical Chemistry, 2024, 96(28): 11255-11262. DOI:10.1021/acs.analchem.4c00897
    4. Qobatiah, S., Gunawati, Mitaphonna, R., Idris, N. Detection of uranium content in salt traditionally produced in Lam Ujong farm of Aceh besar region using laser induced breakdown spectroscopy (LIBS). AIP Conference Proceedings, 2024, 3082(1): 040019. DOI:10.1063/5.0201082
    5. Liu, X., Ren, S., Zhang, M. et al. Comparison of nanosecond and femtosecond laser-induced breakdown spectroscopy for determination of U and Th in tantalum-niobium ores. Journal of Analytical Atomic Spectrometry, 2024. DOI:10.1039/d4ja00268g
    6. Long, J., Song, W., Hou, Z. et al. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2023, 25(7): 075501. DOI:10.1088/2058-6272/acb6dd
    7. Ji, J., Song, W., Hou, Z. et al. Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2022. DOI:10.1016/j.aca.2022.340551
    8. HAN, S.-K., PARK, S.-H., AHN, S.-K. Quantitative analysis of uranium in electrorecovery salt of pyroprocessing using laserinduced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(5): 055502. DOI:10.1088/2058-6272/abed2d
    9. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (245) PDF downloads (210) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return