Advanced Search+
Baochang MAN (满宝昌), Haiyang ZHANG (张海洋), Chuanming ZHANG (张传明), Xing LI (李星), Hui DAI (戴卉), Feng YU (于锋), Mingyuan ZHU (朱明远), Bin DAI (代斌), Jinli ZHANG (张金利). Hydrochlorination of acetylene over the Ru-based catalysts treated by plasma under different atmospheres[J]. Plasma Science and Technology, 2019, 21(8): 85501-085501. DOI: 10.1088/2058-6272/ab0ee8
Citation: Baochang MAN (满宝昌), Haiyang ZHANG (张海洋), Chuanming ZHANG (张传明), Xing LI (李星), Hui DAI (戴卉), Feng YU (于锋), Mingyuan ZHU (朱明远), Bin DAI (代斌), Jinli ZHANG (张金利). Hydrochlorination of acetylene over the Ru-based catalysts treated by plasma under different atmospheres[J]. Plasma Science and Technology, 2019, 21(8): 85501-085501. DOI: 10.1088/2058-6272/ab0ee8

Hydrochlorination of acetylene over the Ru-based catalysts treated by plasma under different atmospheres

Funds: This work was supported by National Natural Science Foundation of China (Nos. 21706167 and 21776179), Fok Ying Tung Education Foundation (161108), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46), Yangtze River Scholar Research Project of Shihezi University (No. CJXZ201601), and the Start-Up Foundation for Young Scientists of Shihezi University (RCZX201507).
More Information
  • Received Date: October 08, 2018
  • Revised Date: March 07, 2019
  • Accepted Date: March 11, 2019
  • Ru-based catalysts modified in different atmospheres by plasma technology were prepared to catalyze the acetylene hydrochlorination reaction. The (Ru/AC)-N2 (AC = activated carbon) catalyst yielded by the plasma modification of Ru/AC catalyst in N2 atmosphere exhibits the best catalytic performance with a stable C2H2 conversion of 87.2%; a relative increase of 27.1% in C2H2 conversion was achieved compared with that of the untreated Ru/AC catalyst. The results of the analysis revealed that the modification produced a mutual effect between the generated function groups on carrier AC and the active components, which can disperse and yield more active species in the fresh catalysts. These are benefits of enhancing the activity of the catalysts. Moreover, the modification can restrain coke formation and inhibit the loss of active species in the reaction, as well as strengthen the adsorption ability of reactants on the catalysts. These are benefits of improving the catalysts’ performance.
  • [1]
    Li X et al 2014 Nat. Commun. 5 3688
    [2]
    Dai B et al 2015 ACS Catal. 5 2541
    [3]
    Homme K G et al 2014 BioMetals 27 19
    [4]
    Mitchenko S A et al 2010 Theor. Exp. Chem. 46 32
    [5]
    Krasnyakova T V et al 2012 J. Catal. 288 33
    [6]
    Hutchings G J et al 1985 J. Catal. 96 292
    [7]
    Conte M et al 2009 J. Catal. 266 190
    [8]
    Wang S et al 2010 Catal. Lett. 134 102
    [9]
    Zhou K et al 2014 ACS Catal. 4 3112
    [10]
    Zhang H Y et al 2014 J. Catal. 316 141
    [11]
    Zhu M Y et al 2013 Can. J. Chem. 91 120
    [12]
    Zhang J L et al 2013 RSC Adv. 3 21062
    [13]
    Zhang H Y et al 2016 Appl. Catal. B: Environ. 189 56
    [14]
    Shang S S et al 2017 ACS Catal. 7 3510
    [15]
    Zhao W et al 2016 Catal. Sci. Technol. 6 1402
    [16]
    Lan G J et al 2018 Micropor. Mesopor. Mater. 264 248
    [17]
    Man B C et al 2017 RSC Adv. 7 23742
    [18]
    Neyts E C et al 2016 Chem. Rev. 116 767
    [19]
    Durme J V et al 2008 Appl. Catal. B: Environ. 78 324
    [20]
    Zhu X L et al 2008 Appl. Catal. B: Environ. 81 132
    [21]
    Zou J J et al 2006 Langmuir 22 2334
    [22]
    Qiu L et al 2012 Appl. Catal. A: Gen. 413 230
    [23]
    Dandekar A et al 1998 Carbon 36 1821
    [24]
    Sun L B et al 2012 J. Appl. Polym. Sci. 123 3270
    [25]
    Weibel D E et al 2006 Surf. Coat. Technol. 201 4190
    [26]
    Li R et al 2013 Appl. Mech. Mater. 268-270 510
    [27]
    Wang B et al 2014 RSC Adv. 4 15877
    [28]
    Zhang Y P et al 2004 Catal. Commun. 5 35
    [29]
    Zhang H Y et al 2013 Green Chem. 15 829
    [30]
    Liu F G et al 2009 Corros. Sci. 51 102
    [31]
    Brennan J K et al 2001 Colloids Surf. A 187 539
    [32]
    Liu Y et al 2008 J. Catal. 256 192
    [33]
    Stuchinskaya T L et al 2005 J. Catal. 231 41
    [34]
    Sharma S et al 2011 J. Catal. 278 297
    [35]
    Ma J H et al 2010 J. Catal. 275 34
    [36]
    Pu Y F et al 2014 Appl. Catal. A: Gen. 488 28
    [37]
    Jin Y H et al 2015 RSC Adv. 5 37774
    [38]
    Xu N et al 2015 RSC Adv. 5 86172
  • Related Articles

    [1]Jiajian ZHU, Le LI, Yifu TIAN, Minggang WAN, Mingbo SUN. Mutual effects between a gliding arc discharge and a premixed flame[J]. Plasma Science and Technology, 2024, 26(12): 125505. DOI: 10.1088/2058-6272/ad8120
    [2]Xiangmei LIU, Xiaotian DONG, Hongying LI, Shuxia ZHAO. The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges[J]. Plasma Science and Technology, 2022, 24(10): 105503. DOI: 10.1088/2058-6272/ac73e7
    [3]Xiaolong WANG (王晓龙), Zhenyu TAN (谭震宇), Jiaqi HAN (韩佳奇), Xiaotong LI (李晓彤). Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution[J]. Plasma Science and Technology, 2020, 22(11): 115504. DOI: 10.1088/2058-6272/abaaa4
    [4]Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
    [5]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [6]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [7]YAN Ying (燕颖), CAI Kaiyong (蔡开勇), YANG Weihu (杨维虎), LIU Peng (刘鹏). Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors[J]. Plasma Science and Technology, 2013, 15(7): 648-653. DOI: 10.1088/1009-0630/15/7/09
    [8]ZHANG Peng (张鹏), WANG Jun (王俊), SUN Yang (孙阳), DING Zejun (丁泽军). Charging Effect in Plasma Etching Mask of Hole Array[J]. Plasma Science and Technology, 2013, 15(6): 570-576. DOI: 10.1088/1009-0630/15/6/15
    [9]LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
  • Cited by

    Periodical cited type(6)

    1. Wang, X., Chen, W., Lei, X. et al. Progress of p-block element-regulated catalysts for acetylene hydrochlorination. Coordination Chemistry Reviews, 2024. DOI:10.1016/j.ccr.2023.215541
    2. Fan, Y., Liu, Z., Sun, S. et al. Metal-Organic Frameworks Encaged Ru Single Atoms for Rapid Acetylene Harvest and Activation in Hydrochlorination. ACS Applied Materials and Interfaces, 2023, 15(20): 24701-24712. DOI:10.1021/acsami.3c01983
    3. Li, F., Zhang, H., Zhang, M. et al. Construction of multistage porous carbon materials for the hydrochlorination of acetylene: Impact of nitrogen incorporation. Molecular Catalysis, 2022. DOI:10.1016/j.mcat.2022.112405
    4. Jin, X., Hao, Y., Liu, C. et al. Waste cigarette butt-derived nitrogen-doped porous carbon as a non-mercury catalyst for acetylene hydrochlorination. New Journal of Chemistry, 2021, 45(41): 19358-19363. DOI:10.1039/d1nj03858c
    5. Hu, J., Wang, F., Li, Y. et al. Enhanced catalytic performance of oxidized Ru supported on N-doped mesoporous carbon for acetylene hydrochlorination. Applied Catalysis A: General, 2021. DOI:10.1016/j.apcata.2021.118236
    6. Cai, M., Zhang, H., Man, B. et al. Synthesis of a vinyl chloride monomerviaacetylene hydrochlorination with a ruthenium-based N-heterocyclic carbene complex catalyst. Catalysis Science and Technology, 2020, 10(11): 3552-3560. DOI:10.1039/d0cy00512f

    Other cited types(0)

Catalog

    Article views (193) PDF downloads (142) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return