Advanced Search+
Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602
Citation: Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602

High density γ-ray emission and dense positron production via multi-laser driven circular target

Funds: This work was supported by the National Natural Science Foundation of China (Nos. 11875007, 11305010).
More Information
  • Received Date: December 05, 2018
  • Revised Date: April 03, 2019
  • Accepted Date: April 03, 2019
  • A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 Wcm−2 by using 2D particle-in-cell simulations with quantum electrodynamics. It is found that the circular target can enhance the density of γ-photons significantly more than a plane target, when two colliding circularly polarized lasers irradiate the target. By multi-laser irradiating the circular target, the optical trap of lasers can prevent the high energy electrons accelerated by laser radiation pressure from escaping. Hence, γ-photons with a high density of beyond 5000nc are obtained through nonlinear Compton backscattering. Meanwhile, 2.7×1011 positrons with an average energy of 230 MeV are achieved via the multiphoton Breit–Wheeler process. Such an ultrabright γ-ray source and dense positron source can be useful in many applications. The optimal target radius and laser mismatching deviation parameters are also discussed in detail.
  • [1]
    Yanovsky V et al 2008 Opt. Express 16 2109
    [2]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [3]
    Mourou G A et al 2006 Rev. Mod. Phys. 78 309
    [4]
    Remington B A et al 2005 Plasma Phys. Control. Fusion 47 A191
    [5]
    Rufni R et al 2010 Phys. Rep. 487 1
    [6]
    Luo W et al 2018 Sci. Rep. 8 8400
    [7]
    Luo W et al 2018 Plasma Phys. Control Fusion 60 044011
    [8]
    Aharonian F et al 2005 Science 307 1938
    [9]
    Avetissian H K et al 2002 Phys. Rev. E 66 016502
    [10]
    Shen B F et al 2001 Phys. Rev. E 65 016405
    [11]
    Chen H et al 2009 Phys. Rev. Lett. 102 105001
    [12]
    Liang E P et al 1998 Phys. Rev. Lett. 81 4887
    [13]
    Avetissian H K et al 1996 Phys. Rev. D 54 5509
    [14]
    Shkolnikova P L et al 1997 Appl. Phys. Lett. 71 3471
    [15]
    Berezhiani V I et al 2007 Phys. Lett. A 360 624
    [16]
    Di Piazza A et al 2010 Phys. Rev. Lett. 105 220403
    [17]
    Ta Phuoc K et al 2012 Nat. Photon 6 308
    [18]
    Sarri G et al 2014 Phys. Rev. Lett. 113 224801
    [19]
    Sakai Y et al 2011 Phys. Rev. Accel. Beams 14 120702
    [20]
    Breit G et al 1934 Phys. Rev. 46 1087
    [21]
    Nikishov A I and Ritus V I 1964 Quantum processes in the field of a plane electromagnetic wave and in a constant field Sov. Phys. JETP 19 529–41
    [22]
    Gelfer E G et al 2015 Phys. Rev. A 92 022113
    [23]
    Yuan T et al 2017 Phys. Plasmas 24 063104
    [24]
    Marija V et al 2017 Plasma Phys. Control. Fusion 59 014040
    [25]
    Bulanov S S et al 2010 Phys. Rev. Lett. 104 220404
    [26]
    Gonoskov A et al 2014 Phys. Rev. Lett. 113 014801
    [27]
    Esirkepov T Z et al 2015 Phys. Lett. A 379 2044
    [28]
    Kirk J G 2016 Plasma Phys. Control. Fusion 58 085005
    [29]
    Liu J J et al 2016 Opt. Express 17 15978
    [30]
    Huang T W et al 2017 Appl. Phys. Lett. 110 021102
    [31]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [32]
    Brady C S et al 2013 Plasma Phys. Control. Fusion 55 124016
    [33]
    Zhu X L et al 2019 Matter Radiat. Extremes 4 014401
    [34]
    Zhu X L et al 2018 New J. Phys. 20 083013
    [35]
    Ridgers C P et al 2012 Phys. Rev. Lett. 108 165006
    [36]
    Luo W et al 2015 Phys. Plasmas 22 063112
    [37]
    Chang H X et al 2015 Phys. Rev. E 92 053107
    [38]
    Liu W Y et al 2017 Phys. Plasmas 24 103130
    [39]
    Liu W Y et al 2018 Chin. Phys. B 27 105202
    [40]
    Luo W et al 2018 Plasma Phys. Control. Fusion 60 095006
    [41]
    Liu J X et al 2016 Plasma Phys. Control. Fusion 58 125007
    [42]
    Lobet M et al 2017 Phys. Rev. Accel. Beams 20 043401
    [43]
    Liu J X et al 2017 Plasma Sci. Technol. 19 015001
    [44]
    Li H Z et al 2017 Opt. Express 25 21583
    [45]
    Hu L X et al 2015 Phys. Plasmas 22 033104
    [46]
    Li H Z et al 2017 Sci. Rep. 7 17312
    [47]
    Henig A et al 2009 Phys. Rev. Lett. 103 245003
    [48]
    Macchi A et al 2009 Phys. Rev. Lett. 103 085003
    [49]
    Lv C et al 2017 Phys. Plasmas 24 033122
    [50]
    Zhou W J et al 2018 Phys. Rev. Accel. Beams 21 021301
    [51]
    Ji L L et al 2014 Phys. Rev. Lett. 112 145003
    [52]
    Ridgers C P et al 2014 J. Comput. Phys. 260 273
    [53]
    Duclous R et al 2011 Plasma Phys. Control. Fusion 53 015009
    [54]
    Liechtenstein V K et al 1997 Nucl. Instrum. Methods Phys. Res. 397 140
    [55]
    Schwinger J 1951 Phys. Rev. 82 664
    [56]
    Chen M et al 2011 Phys. Plasmas 18 073106
    [57]
    Wang W Q et al 2015 Phys. Rev. E 92 063111 9
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Article views (177) PDF downloads (166) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return