Advanced Search+
Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602
Citation: Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602

High density γ-ray emission and dense positron production via multi-laser driven circular target

Funds: This work was supported by the National Natural Science Foundation of China (Nos. 11875007, 11305010).
More Information
  • Received Date: December 05, 2018
  • Revised Date: April 03, 2019
  • Accepted Date: April 03, 2019
  • A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 Wcm−2 by using 2D particle-in-cell simulations with quantum electrodynamics. It is found that the circular target can enhance the density of γ-photons significantly more than a plane target, when two colliding circularly polarized lasers irradiate the target. By multi-laser irradiating the circular target, the optical trap of lasers can prevent the high energy electrons accelerated by laser radiation pressure from escaping. Hence, γ-photons with a high density of beyond 5000nc are obtained through nonlinear Compton backscattering. Meanwhile, 2.7×1011 positrons with an average energy of 230 MeV are achieved via the multiphoton Breit–Wheeler process. Such an ultrabright γ-ray source and dense positron source can be useful in many applications. The optimal target radius and laser mismatching deviation parameters are also discussed in detail.
  • [1]
    Yanovsky V et al 2008 Opt. Express 16 2109
    [2]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [3]
    Mourou G A et al 2006 Rev. Mod. Phys. 78 309
    [4]
    Remington B A et al 2005 Plasma Phys. Control. Fusion 47 A191
    [5]
    Rufni R et al 2010 Phys. Rep. 487 1
    [6]
    Luo W et al 2018 Sci. Rep. 8 8400
    [7]
    Luo W et al 2018 Plasma Phys. Control Fusion 60 044011
    [8]
    Aharonian F et al 2005 Science 307 1938
    [9]
    Avetissian H K et al 2002 Phys. Rev. E 66 016502
    [10]
    Shen B F et al 2001 Phys. Rev. E 65 016405
    [11]
    Chen H et al 2009 Phys. Rev. Lett. 102 105001
    [12]
    Liang E P et al 1998 Phys. Rev. Lett. 81 4887
    [13]
    Avetissian H K et al 1996 Phys. Rev. D 54 5509
    [14]
    Shkolnikova P L et al 1997 Appl. Phys. Lett. 71 3471
    [15]
    Berezhiani V I et al 2007 Phys. Lett. A 360 624
    [16]
    Di Piazza A et al 2010 Phys. Rev. Lett. 105 220403
    [17]
    Ta Phuoc K et al 2012 Nat. Photon 6 308
    [18]
    Sarri G et al 2014 Phys. Rev. Lett. 113 224801
    [19]
    Sakai Y et al 2011 Phys. Rev. Accel. Beams 14 120702
    [20]
    Breit G et al 1934 Phys. Rev. 46 1087
    [21]
    Nikishov A I and Ritus V I 1964 Quantum processes in the field of a plane electromagnetic wave and in a constant field Sov. Phys. JETP 19 529–41
    [22]
    Gelfer E G et al 2015 Phys. Rev. A 92 022113
    [23]
    Yuan T et al 2017 Phys. Plasmas 24 063104
    [24]
    Marija V et al 2017 Plasma Phys. Control. Fusion 59 014040
    [25]
    Bulanov S S et al 2010 Phys. Rev. Lett. 104 220404
    [26]
    Gonoskov A et al 2014 Phys. Rev. Lett. 113 014801
    [27]
    Esirkepov T Z et al 2015 Phys. Lett. A 379 2044
    [28]
    Kirk J G 2016 Plasma Phys. Control. Fusion 58 085005
    [29]
    Liu J J et al 2016 Opt. Express 17 15978
    [30]
    Huang T W et al 2017 Appl. Phys. Lett. 110 021102
    [31]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [32]
    Brady C S et al 2013 Plasma Phys. Control. Fusion 55 124016
    [33]
    Zhu X L et al 2019 Matter Radiat. Extremes 4 014401
    [34]
    Zhu X L et al 2018 New J. Phys. 20 083013
    [35]
    Ridgers C P et al 2012 Phys. Rev. Lett. 108 165006
    [36]
    Luo W et al 2015 Phys. Plasmas 22 063112
    [37]
    Chang H X et al 2015 Phys. Rev. E 92 053107
    [38]
    Liu W Y et al 2017 Phys. Plasmas 24 103130
    [39]
    Liu W Y et al 2018 Chin. Phys. B 27 105202
    [40]
    Luo W et al 2018 Plasma Phys. Control. Fusion 60 095006
    [41]
    Liu J X et al 2016 Plasma Phys. Control. Fusion 58 125007
    [42]
    Lobet M et al 2017 Phys. Rev. Accel. Beams 20 043401
    [43]
    Liu J X et al 2017 Plasma Sci. Technol. 19 015001
    [44]
    Li H Z et al 2017 Opt. Express 25 21583
    [45]
    Hu L X et al 2015 Phys. Plasmas 22 033104
    [46]
    Li H Z et al 2017 Sci. Rep. 7 17312
    [47]
    Henig A et al 2009 Phys. Rev. Lett. 103 245003
    [48]
    Macchi A et al 2009 Phys. Rev. Lett. 103 085003
    [49]
    Lv C et al 2017 Phys. Plasmas 24 033122
    [50]
    Zhou W J et al 2018 Phys. Rev. Accel. Beams 21 021301
    [51]
    Ji L L et al 2014 Phys. Rev. Lett. 112 145003
    [52]
    Ridgers C P et al 2014 J. Comput. Phys. 260 273
    [53]
    Duclous R et al 2011 Plasma Phys. Control. Fusion 53 015009
    [54]
    Liechtenstein V K et al 1997 Nucl. Instrum. Methods Phys. Res. 397 140
    [55]
    Schwinger J 1951 Phys. Rev. 82 664
    [56]
    Chen M et al 2011 Phys. Plasmas 18 073106
    [57]
    Wang W Q et al 2015 Phys. Rev. E 92 063111 9

Catalog

    Article views (177) PDF downloads (166) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return