Advanced Search+
Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602
Citation: Yajuan HOU (侯雅娟), Baisong XIE (谢柏松), Chong LV (吕冲), Feng WAN (弯峰), Li WANG (王莉), Nureli YASEN, Haibo SANG (桑海波), Guoxing XIA (夏国兴). High density γ-ray emission and dense positron production via multi-laser driven circular target[J]. Plasma Science and Technology, 2019, 21(8): 85201-085201. DOI: 10.1088/2058-6272/ab1602

High density γ-ray emission and dense positron production via multi-laser driven circular target

Funds: This work was supported by the National Natural Science Foundation of China (Nos. 11875007, 11305010).
More Information
  • Received Date: December 05, 2018
  • Revised Date: April 03, 2019
  • Accepted Date: April 03, 2019
  • A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 Wcm−2 by using 2D particle-in-cell simulations with quantum electrodynamics. It is found that the circular target can enhance the density of γ-photons significantly more than a plane target, when two colliding circularly polarized lasers irradiate the target. By multi-laser irradiating the circular target, the optical trap of lasers can prevent the high energy electrons accelerated by laser radiation pressure from escaping. Hence, γ-photons with a high density of beyond 5000nc are obtained through nonlinear Compton backscattering. Meanwhile, 2.7×1011 positrons with an average energy of 230 MeV are achieved via the multiphoton Breit–Wheeler process. Such an ultrabright γ-ray source and dense positron source can be useful in many applications. The optimal target radius and laser mismatching deviation parameters are also discussed in detail.
  • [1]
    Yanovsky V et al 2008 Opt. Express 16 2109
    [2]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [3]
    Mourou G A et al 2006 Rev. Mod. Phys. 78 309
    [4]
    Remington B A et al 2005 Plasma Phys. Control. Fusion 47 A191
    [5]
    Rufni R et al 2010 Phys. Rep. 487 1
    [6]
    Luo W et al 2018 Sci. Rep. 8 8400
    [7]
    Luo W et al 2018 Plasma Phys. Control Fusion 60 044011
    [8]
    Aharonian F et al 2005 Science 307 1938
    [9]
    Avetissian H K et al 2002 Phys. Rev. E 66 016502
    [10]
    Shen B F et al 2001 Phys. Rev. E 65 016405
    [11]
    Chen H et al 2009 Phys. Rev. Lett. 102 105001
    [12]
    Liang E P et al 1998 Phys. Rev. Lett. 81 4887
    [13]
    Avetissian H K et al 1996 Phys. Rev. D 54 5509
    [14]
    Shkolnikova P L et al 1997 Appl. Phys. Lett. 71 3471
    [15]
    Berezhiani V I et al 2007 Phys. Lett. A 360 624
    [16]
    Di Piazza A et al 2010 Phys. Rev. Lett. 105 220403
    [17]
    Ta Phuoc K et al 2012 Nat. Photon 6 308
    [18]
    Sarri G et al 2014 Phys. Rev. Lett. 113 224801
    [19]
    Sakai Y et al 2011 Phys. Rev. Accel. Beams 14 120702
    [20]
    Breit G et al 1934 Phys. Rev. 46 1087
    [21]
    Nikishov A I and Ritus V I 1964 Quantum processes in the field of a plane electromagnetic wave and in a constant field Sov. Phys. JETP 19 529–41
    [22]
    Gelfer E G et al 2015 Phys. Rev. A 92 022113
    [23]
    Yuan T et al 2017 Phys. Plasmas 24 063104
    [24]
    Marija V et al 2017 Plasma Phys. Control. Fusion 59 014040
    [25]
    Bulanov S S et al 2010 Phys. Rev. Lett. 104 220404
    [26]
    Gonoskov A et al 2014 Phys. Rev. Lett. 113 014801
    [27]
    Esirkepov T Z et al 2015 Phys. Lett. A 379 2044
    [28]
    Kirk J G 2016 Plasma Phys. Control. Fusion 58 085005
    [29]
    Liu J J et al 2016 Opt. Express 17 15978
    [30]
    Huang T W et al 2017 Appl. Phys. Lett. 110 021102
    [31]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [32]
    Brady C S et al 2013 Plasma Phys. Control. Fusion 55 124016
    [33]
    Zhu X L et al 2019 Matter Radiat. Extremes 4 014401
    [34]
    Zhu X L et al 2018 New J. Phys. 20 083013
    [35]
    Ridgers C P et al 2012 Phys. Rev. Lett. 108 165006
    [36]
    Luo W et al 2015 Phys. Plasmas 22 063112
    [37]
    Chang H X et al 2015 Phys. Rev. E 92 053107
    [38]
    Liu W Y et al 2017 Phys. Plasmas 24 103130
    [39]
    Liu W Y et al 2018 Chin. Phys. B 27 105202
    [40]
    Luo W et al 2018 Plasma Phys. Control. Fusion 60 095006
    [41]
    Liu J X et al 2016 Plasma Phys. Control. Fusion 58 125007
    [42]
    Lobet M et al 2017 Phys. Rev. Accel. Beams 20 043401
    [43]
    Liu J X et al 2017 Plasma Sci. Technol. 19 015001
    [44]
    Li H Z et al 2017 Opt. Express 25 21583
    [45]
    Hu L X et al 2015 Phys. Plasmas 22 033104
    [46]
    Li H Z et al 2017 Sci. Rep. 7 17312
    [47]
    Henig A et al 2009 Phys. Rev. Lett. 103 245003
    [48]
    Macchi A et al 2009 Phys. Rev. Lett. 103 085003
    [49]
    Lv C et al 2017 Phys. Plasmas 24 033122
    [50]
    Zhou W J et al 2018 Phys. Rev. Accel. Beams 21 021301
    [51]
    Ji L L et al 2014 Phys. Rev. Lett. 112 145003
    [52]
    Ridgers C P et al 2014 J. Comput. Phys. 260 273
    [53]
    Duclous R et al 2011 Plasma Phys. Control. Fusion 53 015009
    [54]
    Liechtenstein V K et al 1997 Nucl. Instrum. Methods Phys. Res. 397 140
    [55]
    Schwinger J 1951 Phys. Rev. 82 664
    [56]
    Chen M et al 2011 Phys. Plasmas 18 073106
    [57]
    Wang W Q et al 2015 Phys. Rev. E 92 063111 9
  • Related Articles

    [1]Jiajian ZHU, Le LI, Yifu TIAN, Minggang WAN, Mingbo SUN. Mutual effects between a gliding arc discharge and a premixed flame[J]. Plasma Science and Technology, 2024, 26(12): 125505. DOI: 10.1088/2058-6272/ad8120
    [2]Xiangmei LIU, Xiaotian DONG, Hongying LI, Shuxia ZHAO. The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges[J]. Plasma Science and Technology, 2022, 24(10): 105503. DOI: 10.1088/2058-6272/ac73e7
    [3]Xiaolong WANG (王晓龙), Zhenyu TAN (谭震宇), Jiaqi HAN (韩佳奇), Xiaotong LI (李晓彤). Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution[J]. Plasma Science and Technology, 2020, 22(11): 115504. DOI: 10.1088/2058-6272/abaaa4
    [4]Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
    [5]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [6]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [7]YAN Ying (燕颖), CAI Kaiyong (蔡开勇), YANG Weihu (杨维虎), LIU Peng (刘鹏). Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors[J]. Plasma Science and Technology, 2013, 15(7): 648-653. DOI: 10.1088/1009-0630/15/7/09
    [8]ZHANG Peng (张鹏), WANG Jun (王俊), SUN Yang (孙阳), DING Zejun (丁泽军). Charging Effect in Plasma Etching Mask of Hole Array[J]. Plasma Science and Technology, 2013, 15(6): 570-576. DOI: 10.1088/1009-0630/15/6/15
    [9]LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
  • Cited by

    Periodical cited type(9)

    1. Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318
    2. Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76
    3. Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088
    4. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    5. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    6. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    7. Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530
    8. Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223
    9. Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705

    Other cited types(0)

Catalog

    Article views (177) PDF downloads (166) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return