Citation: | Roohollah ROSTAMI, Gholamreza MOUSSAVI, Sara DARBARI, Ahmad JONIDI JAFARI. Enhanced removal of benzene in nonthermal plasma with ozonation, flow recycling, and flow recirculation[J]. Plasma Science and Technology, 2019, 21(9): 95501-095501. DOI: 10.1088/2058-6272/ab2198 |
[1] |
Rostami R and Jafari A J 2015 J. Environ. Sci. Technol. 8 149
|
[2] |
Hazrati S et al 2016 Air Qual. Atmos. Health 9 403
|
[3] |
Tunsaringkarn T et al 2012 Int. J. Occup. Environ. Med. 3 117
|
[4] |
Fazlzadeh D M et al 2012 J. Babol Univ. Med. Sci. 14 50
|
[5] |
Hazrati S, Rostami R and Fazlzadeh M 2015 Sci. Total Environ. 524–525 347
|
[6] |
Kim H H et al 2005 Appl. Catal. B Environ. 56 213
|
[7] |
Vandenbroucke A M et al 2011 J. Hazard. Mater. 195 30
|
[8] |
Qin C H et al 2019 J. Hazard. Mater. 369 430
|
[9] |
Veerapandian S K P et al 2019 Catalysts 9 98
|
[10] |
Guo H et al 2019 Environ. Sci. Pollut. Res. 26 8237–47
|
[11] |
Saleem F, Zhang K and Harvey A P 2019 Chem. Eng. J.360 714
|
[12] |
Urashima K and Chang J S 2000 IEEE Trans. Dielect. Elect.Insul. 7 602
|
[13] |
Zhao X L et al 2019 J. Phys. D Appl. Phys. 52 145201
|
[14] |
Wang W Z et al 2016 Chem. Eng. J. 299 184
|
[15] |
Takaki K, Chang J S and Kostov K G 2004 IEEE Trans.Dielect. Elect. Insul. 11 481
|
[16] |
Satoh K, Matsuzawa T and Itoh H 2008 Thin Solid Films 516 4423
|
[17] |
Redolfi M et al 2019 Plasma Sci. Technol. 21 055503
|
[18] |
Barnes M S et al 1992 Phys. Rev. Lett. 68 313
|
[19] |
Jaworek A, Krupa A and Czech T 2007 J. Electrostat. 65 133
|
[20] |
Chang J S 2003 J. Electrostat. 57 273
|
[21] |
Fridman A A 2008 Plasma Chemistry (Cambridge: Cambridge University Press)
|
[22] |
Jiang C Q et al 2005 IEEE Trans. Plasma Sci. 33 1416
|
[23] |
Yamamoto T et al 1992 IEEE Trans. Ind. Appl. 28 528
|
[24] |
Indarto A et al 2007 Chem. Eng. J. 131 337
|
[25] |
Rostami R et al 2017 J. Electrostat. 87 158
|
[26] |
NIOSH 2003 NIOSH Manual of Analytical Methods (NMAM) 4th edn (Atlanta, GA: Centers for Disease Control and Prevention)
|
[27] |
Turhan K et al 2012 Dyes Pigments 92 897
|
[28] |
Turhan K and Turgut Z 2007 Fresenius Environ. Bull. 16 821
|
[29] |
Magureanu M et al 2005 Appl. Catal. B Environ. 61 12
|
[30] |
Pekárek S 2003 Acta Polyt. 43 47
|
[31] |
Assadi A A, Bouzaza A and Wolbert D 2016 Chem. Eng. Res.Des. 106 308
|
[32] |
Zhu T et al 2008 Int. J. Environ. Sci. Technol. 5 375
|
[33] |
Ma T P et al 2016 Plasma Sci. Technol. 18 686
|
[34] |
Guo Y F et al 2006 Plasma Chem. Plasma Proc. 26 237
|
[35] |
Oda T 2003 J. Electrostat. 57 293
|
[36] |
Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D Appl.Phys. 20 1421
|
[37] |
Batakliev T et al 2014 Interdiscip. Toxicol. 7 47
|
[38] |
Ono R and Oda T 2004 J. Phys. D Appl. Phys. 37 730
|
[39] |
Deng F C, Ye L Y and Song K C 2013 J. Phys. D Appl. Phys.46 425202
|
[40] |
Qin C H et al 2016 Chem. Eng. J. 299 85
|
[41] |
Karuppiah J et al 2012 J. Hazard. Mater. 237-238 283
|
[42] |
Karatum O and Deshusses M A 2016 Chem. Eng. J. 294 308
|
[43] |
Lu B et al 2006 J. Hazard. Mater. 137 633
|
[44] |
Futamura S et al 2002 Catal. Today 72 259
|
[45] |
Fridman A A and Kennedy L A 2004 Plasma Physics and Engineering (Boca Raton, FL: CRC Press)
|
[46] |
Yamamoto T 1997 J. Electrostat. 42 227
|
[47] |
Le H T et al 2001 J. Phys. Chem. A 105 11582
|
[48] |
Kim H H et al 2016 Plasma Chem. Plasma Proc. 36 45
|
[49] |
Cal M P and Schluep M 2001 Environ. Prog. 20 151
|
[50] |
Ge H et al 2011 J. Electrostat. 69 529
|
[51] |
Lorenz K and Zellner R 1983 Ber. Bunsen. Phys. Chem.87 629
|
[52] |
Raju G R G and Hackam R 1973 Proc. Inst. Elect. Eng.120 927
|
[53] |
Du C M, Yan J H and Cheron B 2007 Plasma Sources Sci.Technol. 16 791
|
[54] |
Nichipor H et al 2012 Radiat. Phys. Chem. 81 572
|
[55] |
Xu N et al 2014 Plasma Chem. Plasma Proc. 34 1387
|
[56] |
Dey G R et al 2010 J. Hazard. Mater. 178 693
|
[1] | Ke CHEN, Lianghao WAN, Bingyan CHEN, Tao CHU, Renyue GENG, Deyu SONG, Xiang HE, Wei SU, Cheng YIN, Minglei SHAN, Yongfeng JIANG. Characteristics of water volatilization and oxides generation by using positive and negative corona[J]. Plasma Science and Technology, 2022, 24(4): 044007. DOI: 10.1088/2058-6272/ac567c |
[2] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[3] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[4] | Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08 |
[5] | MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17 |
[6] | J. P. SARRETTE, O. EICHWALD, F. MARCHAL, O. DUCASSE, M. YOUSFI. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges[J]. Plasma Science and Technology, 2016, 18(5): 469-472. DOI: 10.1088/1009-0630/18/5/04 |
[7] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[8] | CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04 |
[9] | LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05 |
[10] | JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11 |
1. | Zheng, H., Ni, G., Sun, H. et al. Experimental investigation of styrene destruction in a non-thermal multi-arc plasma reactor with three pairs of electrodes. Environmental Technology (United Kingdom), 2025. DOI:10.1080/09593330.2025.2474258 |
2. | Liang, Y., Xue, Y., Fang, D. et al. Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene?. Fundamental Research, 2024, 4(5): 1100-1109. DOI:10.1016/j.fmre.2022.03.026 |
3. | Vertongen, R., Trenchev, G., Van Loenhout, R. et al. Enhancing CO2conversion with plasma reactors in series and O2removal. Journal of CO2 Utilization, 2022. DOI:10.1016/j.jcou.2022.102252 |
4. | Mu, Y., Williams, P.T. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.136481 |
5. | Bang, J.H., Santos, C.A., Jo, Y.M. Energy efficient treatment of indoor volatile organic compounds using a serial dielectric barrier discharge reactor. Process Safety and Environmental Protection, 2021. DOI:10.1016/j.psep.2021.07.009 |
6. | Santos, C.A., Phuong, N.H., Park, M.J. et al. Decomposition of indoor VOC pollutants using non-thermal plasma with gas recycling. Korean Journal of Chemical Engineering, 2020, 37(1): 120-129. DOI:10.1007/s11814-019-0406-8 |
7. |
Rostami, R., Moussavi, G., Jafari, A.J. et al. Abatement of benzene in sequential non-thermal plasma-influence of operational factors-. International Journal of Plasma Environmental Science and Technology, 2019, 13(1): 26-33.
![]() |