Advanced Search+
Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Analysis of microwave propagation in a time-varying plasma slab with particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(10): 105501. DOI: 10.1088/2058-6272/ab2a44
Citation: Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Analysis of microwave propagation in a time-varying plasma slab with particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(10): 105501. DOI: 10.1088/2058-6272/ab2a44

Analysis of microwave propagation in a time-varying plasma slab with particle-in-cell simulations

Funds: The project is supported by National Natural Science Foundation of China (Nos. 51677145, 11622542 and U1537210).
More Information
  • Received Date: March 25, 2019
  • Revised Date: June 13, 2019
  • Accepted Date: June 16, 2019
  • Continuous microwave propagation through a time-varying plasma and frequency up-conversion has been demonstrated by particle-in-cell (PIC) simulation. In principle, it is possible to transform a 2.45 GHz source radiation to an arbitrary larger frequency radiation. The energy conversion is also obtained by the theoretical analysis and has been testified by PIC simulation. The source wave was propagating in a parallel plate waveguide locally filled with the ionized gas. In this paper we would discuss the effects of the rise time, the plasma length, the switching time and the collision frequency on the energy conversion, and the methods to improve the upshift wave energy are proposed. We also put forward the new concept of the critical values of the rise time and the source wave amplitude to provide a theoretical basis for the selection of parameters in the experiments.
  • [1]
    Yablonovitch E 1973 Phys. Rev. Lett. 31 877
    [2]
    Jiang C L 1975 IEEE Trans. Antennas Propag. 23 83
    [3]
    Stepanov N S 1976 Radiophys. Quantum Electron. 19 683
    [4]
    Kravtsov Y A, Ostrovsky L A and Stepanov N S 1974 Proc.IEEE 62 1492
    [5]
    Kuo S P 1990 Phys. Rev Lett. 65 1000
    [6]
    Joshi C J et al 1990 IEEE Trans. Plasma Sci. 18 814
    [7]
    Yugami N et al 2002 Phys. Rev. E 65 036505
    [8]
    Lai C H et al 1993 IEEE Trans. Plasma Sci. 21 45
    [9]
    Wilks S C, Dawson J M and Mori W B 1988 Phys. Rev. Lett.61 337
    [10]
    Esarey E, Ting A and Sprangle P 1990 Phys. Rev. A 42 3526
    [11]
    Nishida A et al 2012 Rev. Sci. Instrum. 83 045104
    [12]
    Nishida A et al 2013 EPJ Web Conf. 59 19004
    [13]
    Nishida A et al 2012 Appl. Phys. Lett. 101 161118
    [14]
    Yang M et al 2016 AIP Adv. 6 055110
    [15]
    Kalluri D K 2010 Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer 2nd edn (Boca Raton, FL: CRC Press)
    [16]
    Kalluri D K and Ehsan M M 2004 Int. J. Infrared Millim.Waves 25 327
    [17]
    Kalluri D K, Khalifeh A F and Eker S 2007 IEEE Trans.Antennas Propag. 55 1789
    [18]
    Chen K et al 2017 Phys. Plasmas 24 033507
    [19]
    Li Y D et al 2009 High Power Laser Part. Beams 21 1866 (in Chinese)
    [20]
    Liu Z W et al 2014 Acta Phys. Sin. 63 235201 (in Chinese)
    [21]
    Dawson J M 1959 Phys. Rev. 113 383
    [22]
    Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod.Phys. 81 1229
  • Related Articles

    [1]Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b
    [2]Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814
    [3]Hua LI (李花), Zhengduo WANG (王正铎), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). Insight into the remaining high surface energy of atmospheric DBD plasma-treated polyethylene web after three months’ aging[J]. Plasma Science and Technology, 2019, 21(1): 15504-015504. DOI: 10.1088/2058-6272/aae2ad
    [4]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [5]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [6]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [7]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [8]SONG Yushou(宋玉收), YAN Qiang(颜强), JING Tian(井田), XI Yinyin(席印印), LIU Huilan(刘辉兰). The Distortion of Energy Deposit Distribution of 12C Ions in Water[J]. Plasma Science and Technology, 2012, 14(7): 665-669. DOI: 10.1088/1009-0630/14/7/22
    [9]JIAO Changfeng (焦长峰), XU Furong (许甫荣), SUN Yang (孙扬). Angular Momentum Projected Potential-energy-surface Calculation: Application to 178Hf[J]. Plasma Science and Technology, 2012, 14(6): 514-517. DOI: 10.1088/1009-0630/14/6/17
    [10]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.

Catalog

    Article views (156) PDF downloads (161) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return