Advanced Search+
Jingjing LIU (柳晶晶), Dong CHEN (陈东), Yijian MO (莫益健), Yi RONG (荣一). Electrical and optical characteristics of atmospheric helium jet array plasma[J]. Plasma Science and Technology, 2019, 21(11): 115403. DOI: 10.1088/2058-6272/ab2b5a
Citation: Jingjing LIU (柳晶晶), Dong CHEN (陈东), Yijian MO (莫益健), Yi RONG (荣一). Electrical and optical characteristics of atmospheric helium jet array plasma[J]. Plasma Science and Technology, 2019, 21(11): 115403. DOI: 10.1088/2058-6272/ab2b5a

Electrical and optical characteristics of atmospheric helium jet array plasma

Funds: This work was supported by the Training Plan for Outstanding Young Teachers in Colleges and Universities of Guangdong Province (YQ2015123).
More Information
  • Received Date: February 26, 2019
  • Revised Date: June 04, 2019
  • Accepted Date: June 19, 2019
  • In this paper, a honeycomb structure jet array with seven jet units was adopted to generate plasmas. Both the average discharge power and the emission intensity of the main excited species increase with increasing applied voltage. There are three stages of discharge evolution at different applied voltages: initial discharge, uniform discharge and strong coupling discharge. The spatial distribution of the emission intensity of the excited species can be divided into three categories: growth class, weakening class and variation class. The gas temperature along the whole plasma plume at different applied voltages is maintained at around 320 K and can be widely used in heat-labile applications.
  • [1]
    Shao T et al 2016 High Volt. Eng. 42 685 (in Chinese)
    [2]
    Zhou Y D, Fang Z and Wu W J 2014 Chin. J. Vac. Sci.Technol. 34 1294 (in Chinese)
    [3]
    Chen S L et al 2017 Appl. Surf. Sci. 414 107
    [4]
    Dai D, Ning W J and Shao T 2017 Trans. China Electrotechn.Soc. 32 1 (in Chinese)
    [5]
    Nie Q Y et al 2009 New J. Phys. 11 115015
    [6]
    Reuter S, von Woedtke T and Weltmann K D 2018 J. Phys. D:Appl. Phys. 51 233001
    [7]
    Fang Z, Zhang B and Ruan C 2016 High Volt Eng. 42 1151 (in Chinese)
    [8]
    Fang Z et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2288
    [9]
    Shen Y et al 2016 High Power Laser Part. Beams 28 055001 (in Chinese)
    [10]
    Wu S Q et al 2016 IEEE Trans. Plasma Sci. 44 2632
    [11]
    Li D et al 2016 IEEE Trans. Plasma Sci. 44 2648
    [12]
    Liu J F, Fang Z and Zhou Y D 2014 High Volt. Eng. 40 1214 (in Chinese)
    [13]
    Chen B Y et al 2016 IEEE Trans. Plasma Sci. 44 3369
    [14]
    Fang Z et al 2017 High Volt. Eng. 43 1775 (in Chinese)
    [15]
    Li D et al 2016 J. Phys. D: Appl. Phys. 49 455202
    [16]
    Wang R X et al 2017 Phys. Plasmas 24 093507
    [17]
    Gerber I C et al 2017 Appl. Sci. 7 812
    [18]
    Gazeli K et al 2013 J. Appl. Phys. 114 103304
    [19]
    Ding Z F, Fang Z and Xu J 2016 Trans. China Electrotechn.Soc. 31 159 (in Chinese)
    [20]
    Wang R X et al 2016 IEEE Trans. Plasma Sci. 44 393
    [21]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [22]
    Fang Z et al 2014 High Volt. Eng. 40 2049 (in Chinese)
    [23]
    Zhang C et al 2014 Appl. Phys. Lett. 105 044102
    [24]
    Nikiforov A et al 2016 J. Phys. D: Appl. Phys. 49 204002
    [25]
    Zhou Y X, Fang Z and Shao T 2014 Trans. China Electrotechn. Soc. 29 229 (in Chinese)
    [26]
    Yan D Y, Sherman J H and Keidar M 2017 Oncotarget 8 15977
    [27]
    Li L et al 2016 Appl. Surf. Sci. 362 348
    [28]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [29]
    Hu J T et al 2012 Phys. Plasmas 19 063505
    [30]
    Kim J Y, Ballato J and Kim S O 2012 Plasma Process. Polym.9 253
    [31]
    Liu F et al 2018 J. Vac. Sci. Technol. A 36 061302
    [32]
    Qazi H I A et al 2018 Plasma Sci. Technol. 20 075403
    [33]
    Ruan C et al 2017 Trans. China Electrotechn. Soc. 32 82 (in Chinese)
    [34]
    Kim S O et al 2012 Appl. Phys. Lett. 101 173503
    [35]
    do Nascimento F et al 2017 Eur. Phys. J. D 71 274
  • Cited by

    Periodical cited type(4)

    1. Li, H., Liang, Z., Wang, F. et al. Design of a nozzle structure for uniform distribution of active substances in plasma jet honeycomb array configuration. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2025, 43(2): 023006. DOI:10.1116/6.0003993
    2. Shi, B., Wang, M., Li, P. et al. Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field. Energies, 2023, 16(6): 2512. DOI:10.3390/en16062512
    3. Li, H., Li, M., Zhu, H. et al. Realizing high efficiency and large-area sterilization by a rotating plasma jet device. Plasma Science and Technology, 2022, 24(4): 045501. DOI:10.1088/2058-6272/ac550d
    4. Zhu, H., Guo, L., Li, M. et al. Comparison of spatial distribution of active substances and sterilization range generated by array of printed-circuit-board plasma jets. Vacuum, 2021. DOI:10.1016/j.vacuum.2020.109982

    Other cited types(0)

Catalog

    Article views (160) PDF downloads (279) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return