Citation: | Jingjing LIU (柳晶晶), Dong CHEN (陈东), Yijian MO (莫益健), Yi RONG (荣一). Electrical and optical characteristics of atmospheric helium jet array plasma[J]. Plasma Science and Technology, 2019, 21(11): 115403. DOI: 10.1088/2058-6272/ab2b5a |
[1] |
Shao T et al 2016 High Volt. Eng. 42 685 (in Chinese)
|
[2] |
Zhou Y D, Fang Z and Wu W J 2014 Chin. J. Vac. Sci.Technol. 34 1294 (in Chinese)
|
[3] |
Chen S L et al 2017 Appl. Surf. Sci. 414 107
|
[4] |
Dai D, Ning W J and Shao T 2017 Trans. China Electrotechn.Soc. 32 1 (in Chinese)
|
[5] |
Nie Q Y et al 2009 New J. Phys. 11 115015
|
[6] |
Reuter S, von Woedtke T and Weltmann K D 2018 J. Phys. D:Appl. Phys. 51 233001
|
[7] |
Fang Z, Zhang B and Ruan C 2016 High Volt Eng. 42 1151 (in Chinese)
|
[8] |
Fang Z et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2288
|
[9] |
Shen Y et al 2016 High Power Laser Part. Beams 28 055001 (in Chinese)
|
[10] |
Wu S Q et al 2016 IEEE Trans. Plasma Sci. 44 2632
|
[11] |
Li D et al 2016 IEEE Trans. Plasma Sci. 44 2648
|
[12] |
Liu J F, Fang Z and Zhou Y D 2014 High Volt. Eng. 40 1214 (in Chinese)
|
[13] |
Chen B Y et al 2016 IEEE Trans. Plasma Sci. 44 3369
|
[14] |
Fang Z et al 2017 High Volt. Eng. 43 1775 (in Chinese)
|
[15] |
Li D et al 2016 J. Phys. D: Appl. Phys. 49 455202
|
[16] |
Wang R X et al 2017 Phys. Plasmas 24 093507
|
[17] |
Gerber I C et al 2017 Appl. Sci. 7 812
|
[18] |
Gazeli K et al 2013 J. Appl. Phys. 114 103304
|
[19] |
Ding Z F, Fang Z and Xu J 2016 Trans. China Electrotechn.Soc. 31 159 (in Chinese)
|
[20] |
Wang R X et al 2016 IEEE Trans. Plasma Sci. 44 393
|
[21] |
Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
|
[22] |
Fang Z et al 2014 High Volt. Eng. 40 2049 (in Chinese)
|
[23] |
Zhang C et al 2014 Appl. Phys. Lett. 105 044102
|
[24] |
Nikiforov A et al 2016 J. Phys. D: Appl. Phys. 49 204002
|
[25] |
Zhou Y X, Fang Z and Shao T 2014 Trans. China Electrotechn. Soc. 29 229 (in Chinese)
|
[26] |
Yan D Y, Sherman J H and Keidar M 2017 Oncotarget 8 15977
|
[27] |
Li L et al 2016 Appl. Surf. Sci. 362 348
|
[28] |
Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
|
[29] |
Hu J T et al 2012 Phys. Plasmas 19 063505
|
[30] |
Kim J Y, Ballato J and Kim S O 2012 Plasma Process. Polym.9 253
|
[31] |
Liu F et al 2018 J. Vac. Sci. Technol. A 36 061302
|
[32] |
Qazi H I A et al 2018 Plasma Sci. Technol. 20 075403
|
[33] |
Ruan C et al 2017 Trans. China Electrotechn. Soc. 32 82 (in Chinese)
|
[34] |
Kim S O et al 2012 Appl. Phys. Lett. 101 173503
|
[35] |
do Nascimento F et al 2017 Eur. Phys. J. D 71 274
|
1. | Li, H., Liang, Z., Wang, F. et al. Design of a nozzle structure for uniform distribution of active substances in plasma jet honeycomb array configuration. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2025, 43(2): 023006. DOI:10.1116/6.0003993 |
2. | Shi, B., Wang, M., Li, P. et al. Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field. Energies, 2023, 16(6): 2512. DOI:10.3390/en16062512 |
3. | Li, H., Li, M., Zhu, H. et al. Realizing high efficiency and large-area sterilization by a rotating plasma jet device. Plasma Science and Technology, 2022, 24(4): 045501. DOI:10.1088/2058-6272/ac550d |
4. | Zhu, H., Guo, L., Li, M. et al. Comparison of spatial distribution of active substances and sterilization range generated by array of printed-circuit-board plasma jets. Vacuum, 2021. DOI:10.1016/j.vacuum.2020.109982 |