Advanced Search+
Mariammal MEGALINGAM, Bornali SARMA. Occurrence of ionization instability associated with plasma bubble in glow discharge magnetized plasma[J]. Plasma Science and Technology, 2019, 21(11): 115402. DOI: 10.1088/2058-6272/ab2ef2
Citation: Mariammal MEGALINGAM, Bornali SARMA. Occurrence of ionization instability associated with plasma bubble in glow discharge magnetized plasma[J]. Plasma Science and Technology, 2019, 21(11): 115402. DOI: 10.1088/2058-6272/ab2ef2

Occurrence of ionization instability associated with plasma bubble in glow discharge magnetized plasma

Funds: The authors would like to thank ISRO, Government of India, for providing financial support for the research work (Grant No. ISRO/RES/2/391/2014-15).
More Information
  • Received Date: May 01, 2019
  • Revised Date: June 28, 2019
  • Accepted Date: July 02, 2019
  • Floating potential fluctuations of glow discharge magnetized plasma are found to expose mixed mode oscillations (MMOs) in the existence of plasma bubble. Plasma bubble has been formed by emerging density gradient in the form of a sheath around a cylindrical and spherical grid to a critical value of applied potential. Two Langmuir probes, LP1 and LP2, are retained in the ambient plasma to collect the plasma floating potential fluctuations at two different locations of the plasma system. The perceived instability pattern shows regular-irregular-regular MMOs under various imposed conditions. Furthermore, various nonlinear techniques such as phase space plot, recurrence plot and Hurst exponent have been executed to understand the underlying dynamical behavior of the system. Low-frequency (∼200–1200 Hz) oscillations are also supposed and are inferred as ion-acoustic waves excited by ionization instability. The observed results are then validated with the theory of the instability based on a fluid hydrodynamic approach.
  • [1]
    Mott-Smith H M and Langmuir I 1926 Phys. Rev. 28 727
    [2]
    Laframboise J and Rubinstein J 1976 Phys. Fluids. 19 1900
    [3]
    Allen J E 1999 Phys. Scr. 45 497
    [4]
    Salvadori M C et al 2011 J. Appl. Phys. 110 083308
    [5]
    Donoso G and Martin P 1986 Rev. Sci. Instrum. 57 1501
    [6]
    Dolan T J et al 1972 J. Appl. Phys. 43 590
    [7]
    Johnson J C, Angelo N D and Merlino R L 1990 J. Phys. D 23 682
    [8]
    Stenzel R L and Urrutia J M 2012 Phys. Plasmas 19 082105
    [9]
    Stenzel R L and Urrutia J M II 2012 Phys. Plasmas 19 082106
    [10]
    Marino F et al 2004 Phys. Rev. Lett. 92 073901
    [11]
    Lin I and Liu J M 1995 Phys. Rev. Lett. 74 3161
    [12]
    Megalingam M et al 2016 Phys. Plasmas 23 072102
    [13]
    Megalingam M et al 2017 Phys. Plasmas 24 042304
    [14]
    Kumar R, Narayanan R and Prasad A 2014 Phys. Plasmas 21 123501
    [15]
    Saha D et al 2014 Phys. Rev. 28 032301
    [16]
    Brons M et al 2008 Chaos 18 015101
    [17]
    Mikikian M 2008 Pure Appl. Chem. 100 225005
    [18]
    Shaw P K, Iyengar A N S and Nurujjaman M 2015 Phys.Plasmas 28 122301
    [19]
    Hudson L, Hart M and Marinko D 1979 J. Chem. Phys.171 1601
    [20]
    Feder J 1988 Fractals (New York: Plenum)
    [21]
    Lahiri S, Roychowdhury D and Sekar Iyengar A N 2012 Phys.Plasmas 19 08231
    [22]
    Ghosh S et al 2015 Phys. Plasmas 22 052304
    [23]
    Li C-F 2003 Geophys. J. Int. 153 201–12
    [24]
    Johnson J C, Merlino R L and D’Angelo N 1989 J. Appl. Phys.D 22 1456
    [25]
    Johnson J C, Merlino R L and D’Angelo N 1990 J. Appl. Phys.D 23 682–5
    [26]
    D’Angelo N 1967 Phys. Fluids. 10 719
  • Related Articles

    [1]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [2]Xingmin SHI (石兴民), Jinren LIU (刘进仁), Guimin XU (许桂敏), Yueming WU (吴月明), Lingge GAO (高菱鸽), Xiaoyan LI (李晓艳), Yang YANG (杨阳), Guanjun ZHANG (张冠军). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 44004-044004. DOI: 10.1088/2058-6272/aa9b78
    [3]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [4]Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27
    [5]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [6]Zengchao JI (季曾超), Shixiu CHEN (陈仕修), Shen GAO (高深). Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode[J]. Plasma Science and Technology, 2017, 19(1): 15003-015003. DOI: 10.1088/1009-0630/19/1/015003
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [9]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [10]DING Liang (丁亮), HUO Wenqing (霍文青), YANG Xinjie (杨新杰), XU Yuemin (徐跃民). The Interaction of C-Band Microwaves with Large Plasma Sheets[J]. Plasma Science and Technology, 2012, 14(1): 9-13. DOI: 10.1088/1009-0630/14/1/03
  • Cited by

    Periodical cited type(2)

    1. Zhou, X.-F., Xiang, H.-F., Yang, M.-H. et al. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency. Journal of Physics D: Applied Physics, 2023, 56(45): 455202. DOI:10.1088/1361-6463/acec81
    2. Lu, X., Zhang, L., Wang, S. et al. Repetitive pulsed gas-liquid discharge in different atmospheres: from discharge characteristics to plasma-liquid interactions. Physical Chemistry Chemical Physics, 2023, 25(37): 25499-25510. DOI:10.1039/d3cp01074k

    Other cited types(0)

Catalog

    Article views (134) PDF downloads (99) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return