Advanced Search+
E A TUKHMENEVA, S Yu TOLSTYAKOV, G S KURSKIEV, V K GUSEV, V B MINAEV, Yu V PETROV, N V SAKHAROV, A Yu TELNOVA, N N BAKHAREV, P B SHEGOLEV, E O KISELEV. Development of Zeff diagnostic system on the Globus-M (M2) tokamak and the first experimental results[J]. Plasma Science and Technology, 2019, 21(10): 105104. DOI: 10.1088/2058-6272/ab305f
Citation: E A TUKHMENEVA, S Yu TOLSTYAKOV, G S KURSKIEV, V K GUSEV, V B MINAEV, Yu V PETROV, N V SAKHAROV, A Yu TELNOVA, N N BAKHAREV, P B SHEGOLEV, E O KISELEV. Development of Zeff diagnostic system on the Globus-M (M2) tokamak and the first experimental results[J]. Plasma Science and Technology, 2019, 21(10): 105104. DOI: 10.1088/2058-6272/ab305f

Development of Zeff diagnostic system on the Globus-M (M2) tokamak and the first experimental results

Funds: The reported study was funded by RSF according to the research project (No. 17-72-20076).
More Information
  • Received Date: April 29, 2019
  • Revised Date: July 04, 2019
  • Accepted Date: July 08, 2019
  • Studying the behavior of effective ion charge Zeff, which indicates the degree of pollution of plasma and can provide valuable information about many processes taking place in plasma, mechanisms of the releasing impurities, transport, etc is of great interest. This paper describes the development of the Zeff diagnostic system for the Globus-M2 tokamak. The effective ion charge is determined on the basis of measurements of the bremsstrahlung intensity and Thomson scattering data—Te and ne profiles. The results of the first Zeff measurements obtained for several discharges on the Globus-M tokamak are presented in this paper. The results have been validated by simulation using the ASTRA transport code for the same discharges, and it has demonstrated a good agreement with the experimental results.
  • [1]
    Rathgeber S K et al 2010 Plasma Phys. Control. Fusion 52 095008
    [2]
    Patel A et al 2004 Rev. Sci. Instrum. 75 4944
    [3]
    Yingjie C et al 2013 Fusion Eng. Des. 88 2825
    [4]
    Krupin V A et al 2016 PAS&T/TF 39 1
    [5]
    Hofmann J V 1991 Visible spectroscopy on ASDEX Report IPP III/174 Max-Planck-Institut fuer Plasmaphysik
    [6]
    Karzas W J and Latter R 1961 Astrophys. J. Suppl. Ser. 6 167
    [7]
    Minaev V B et al 2017 Nucl. Fusion 57 6
    [8]
    Gusev V K et al 2013 Nucl. Fusion 53 093013
    [9]
    Kurskiev G S et al 2012 PAS&T/TF 35 81
    [10]
    Meister H et al 2003 30th EPS Conf. on Contr. Fusion and Plasma Phys. vol 27A, p P-1.136
    [11]
    Röhr H et al 1998 Rev. Sci. Instrum. 59 1875
    [12]
    Gorbunov A V et al 2015 PAS&T/TF 38 62
    [13]
    Papoular R J and Papoular R 2014 Mon. Not. R. Astron. Soc.443 2974
    [14]
    Pereverzev G V and Yushmanov P N 2002 ASTRA.Automated System for Transport Analysis in a Tokamak Report IPP 5/98 Max-Planck-Institut fuer Plasmaphysik
    [15]
    Avdeeva G F et al 2016 J. Phys.: Conf. Ser. 666 012002
    [16]
    Fulop T and Weiland J 2006 Phys. Plasmas 13 112504
    [17]
    Minaev V B et al 2018 45th EPS Conference on Plasma Physics P4.1065
    [18]
    Minaev V B et al 2018 J. Phys.: Conf. Ser. 1094 012001
  • Related Articles

    [1]Paolo MICOZZI, Franco ALLADIO, Alessandro MANCUSO, Vincenzo ZANZA, Gerarda APRUZZESE, Francesca BOMBARDA, Luca BONCAGNI, Paolo BURATTI, Francesco FILIPPI, Giuseppe GALATOLA TEKA, Francesco GIAMMANCO, Edmondo GIOVANNOZZI, Andrea GROSSO, Matteo IAFRATI, Alessandro LAMPASI, Violeta LAZIC, Simone MAGAGNINO, Simone MANNORI, Paolo MARSILI, Valerio PIERGOTTI, Giuliano ROCCHI, Alessandro SIBIO, Benedetto TILIA, Onofrio TUDISCO. Final results of the first phase of the PROTO-SPHERA experiment: obtainment of the full current stable screw pinch and first evidences of the jet + torus combined plasma configuration[J]. Plasma Science and Technology, 2024, 26(2): 025103. DOI: 10.1088/2058-6272/ad0d4a
    [2]Weikang TANG, Qibin LUAN, Hongen SUN, Lai WEI, Shuangshuang LU, Shuai JIANG, Jian XU, Zhengxiong WANG. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model[J]. Plasma Science and Technology, 2023, 25(4): 045103. DOI: 10.1088/2058-6272/aca372
    [3]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [4]MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权), LIU Wei (刘伟), OU Wei (欧巍), HUANG Yi (黄毅). Magnetic Inertial Confinement Fusion (MICF)[J]. Plasma Science and Technology, 2016, 18(11): 1055-1063. DOI: 10.1088/1009-0630/18/11/01
    [5]Atif HUSSAIN, LI Qi (李奇), HAO Zuoqiang (郝作强), GAO Xun (高勋), LIN Jingquan (林景全). The Effect of an External Magnetic Field on the Plume Expansion Dynamics of Laser-Induced Aluminum Plasma[J]. Plasma Science and Technology, 2015, 17(8): 693-698. DOI: 10.1088/1009-0630/17/8/14
    [6]CHENG Yuguo (成玉国), CHENG Mousen (程谋森), WANG Moge (王墨戈), YANG Xiong (杨雄), LI Xiaokang (李小康). Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1119-2225. DOI: 10.1088/1009-0630/16/12/06
    [7]XU Ming (徐明), WEN Yizhi (闻一之), XIE Jinlin (谢锦林), YU Changxuan (俞昌旋), et al.. Internal Magnetic Configuration Measured by ECE Imaging on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(12): 1194-1196. DOI: 10.1088/1009-0630/15/12/05
    [8]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
    [9]HE Yinghua (何迎花), YU Yi(余羿), WEN Yizhi (闻一之), LIU Wandong(刘万东), LI Ding(李定), YU Changxuan(俞昌旋), XIE Jinlin(谢锦林), LI Hong(李弘), LAN Tao (兰涛), WANG Haoyu(王昊宇). Upgrading of the Magnetic Confinement Plasma Device KT-5E[J]. Plasma Science and Technology, 2012, 14(2): 94-96. DOI: 10.1088/1009-0630/14/2/02
    [10]GUO Wei, WANG Shaojie, LI Jiangang. Vacuum Poloidal Magnetic Field of Tokamak in Alternating-Current Operation[J]. Plasma Science and Technology, 2010, 12(6): 657-660.
  • Cited by

    Periodical cited type(17)

    1. Tkachenko, E.E., Sakharov, N.V., Kavin, A.A. et al. Plasma Stored Energy Analysis during Neutral Beam Injection in the Globus-M2 Tokamak Using the PET Equilibrium Code and Diamagnetic Measurements. Plasma Physics Reports, 2023, 49(12): 1515-1523. DOI:10.1134/S1063780X2360161X
    2. Bakharev, N.N., Balachenkov, I.M., Varfolomeev, V.I. et al. Heat Load onto the Globus-M2 Tokamak Wall due to Fast Ion Loss during Development of Toroidal Alfvén Eigenmodes. Plasma Physics Reports, 2023, 49(12): 1524-1532. DOI:10.1134/S1063780X23601384
    3. Petrov, Y.V., Bagryansky, P.A., Balachenkov, I.M. et al. Diagnostic Complex of the Globus-M2 Spherical Tokamak. Plasma Physics Reports, 2023, 49(12): 1459-1479. DOI:10.1134/S1063780X23601360
    4. Kiselev, E.O., Balachenkov, I.M., Bakharev, N.N. et al. Synthetic Diagnostic of Spectra of Charge-Exchange Atoms for Analysis of Influence of the MHD Instability on Fast-Particle Confinement in Spherical Tokamaks Globus-M/M2. Plasma Physics Reports, 2023, 49(12): 1490-1500. DOI:10.1134/S1063780X23601621
    5. Bakharev, N.N., Balachenkov, I.M., Chernyshev, F.V. et al. TAE-induced fast ion losses and transport at the Globus-M/M2 spherical tokamaks. Physics of Plasmas, 2023, 30(7): 072507. DOI:10.1063/5.0156337
    6. Kurskiev, G.S., Sakharov, N.V., Gusev, V.K. et al. Hot Ion Mode in the Globus-M2 Spherical Tokamak. Plasma Physics Reports, 2023, 49(4): 403-418. DOI:10.1134/S1063780X23600214
    7. Bakharev, N.N., Melnik, A.D., Chernyshev, F.V. Review of the NPA Diagnostic Application at Globus-M/M2. Atoms, 2023, 11(3): 53. DOI:10.3390/atoms11030053
    8. Bakharev, N.N., Balachenkov, I.M., Chernyshev, F.V. et al. Measurement of the fast ion distribution using active NPA diagnostics at the Globus-M2 spherical tokamak. Plasma Physics and Controlled Fusion, 2021, 63(12): 125036. DOI:10.1088/1361-6587/ac3497
    9. Tel’nova, A.Y., Miroshnikov, I.V., Mitrankova, M.M. et al. First Results of the Ion Heat Transport Studies in the Globus-M2 Spherical Tokamak. Technical Physics Letters, 2021, 47(6): 470-473. DOI:10.1134/S106378502105014X
    10. Telnova, A.Y., Kurskiev, G.S., Balachenkov, I.M. et al. First Heat and Particles Transport Study in the Globus-M2 Spherical Tokamak with Neutral Beam Injection at the Current Ramp-Up. Technical Physics, 2021, 66(3): 401-408. DOI:10.1134/S1063784221030221
    11. Skrekel, O.M., Bakharev, N.N., Gusev, V.K. et al. Calculating the Neutron Yield of the Globus-M2 Tokamak with Allowance for the Anisotropy of the Ion Velocity Distribution Function during Neutral Injection of High-Energy Atoms. Technical Physics Letters, 2021, 47(2): 177-180. DOI:10.1134/S1063785021020280
    12. Tukhmeneva, E., Bakharev, N., Varfolomeev, V.I. et al. Measurement results of the power of radiation losses and effective ion charge in experiments on the Globus-M2 tokamak. 2021.
    13. Tukhmeneva, E.A., Bakharev, N.N., Varfolomeev, V.I. et al. Measurement of Radiation Losses and Effective Ion Charge on the Globus-M2 Tokamak. Technical Physics Letters, 2021, 47(1): 56-60. DOI:10.1134/S1063785021010272
    14. Balachenkov, I.M., Petrov, Y.V., Gusev, V.K. et al. First Observations of Alfvén Cascades on the Globus-M2 Tokamak and Their Application for Minimal Safety Factor Value Analysis. Technical Physics Letters, 2020, 46(12): 1157-1161. DOI:10.1134/S1063785020120032
    15. Bakharev, N.N., Chernyshev, F.V., Gusev, V.K. et al. Ion temperature measurements in a tokamak using active neutral particle analyzers diagnostics. Plasma Physics and Controlled Fusion, 2020, 62(12): 125010. DOI:10.1088/1361-6587/abbe32
    16. Bakharev, N.N., Balachenkov, I.M., Chernyshev, F.V. et al. First Globus-M2 Results. Plasma Physics Reports, 2020, 46(7): 675-682. DOI:10.1134/S1063780X20070016
    17. Telnova, A.Y., Kurskiev, G.S., Miroshnikov, I.V. et al. Ion heat transport study in the Globus-M spherical tokamak. Plasma Physics and Controlled Fusion, 2020, 62(4): 045011. DOI:10.1088/1361-6587/ab6da5

    Other cited types(0)

Catalog

    Article views (160) PDF downloads (217) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return