Advanced Search+
Qiao WANG (王乔), Liyun MA (马丽云). Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency[J]. Plasma Science and Technology, 2019, 21(10): 105001. DOI: 10.1088/2058-6272/ab307a
Citation: Qiao WANG (王乔), Liyun MA (马丽云). Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency[J]. Plasma Science and Technology, 2019, 21(10): 105001. DOI: 10.1088/2058-6272/ab307a

Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency

Funds: The authors acknowledge the financial support of National Natural Science Foundation of China (Nos. 11405020, 61520106013, 51661145025, 61727816).
More Information
  • Received Date: June 22, 2019
  • Revised Date: July 04, 2019
  • Accepted Date: July 18, 2019
  • Negative permittivity of the material may lead to the enhanced radiation of an antenna embedded in a finite plasma, which suggests a potential way to solve blackout problem in space technology. However, the enhanced radiation phenomenon is still lack of strict theoretical investigations of surface plasmon polaritons (SPPs) in plasma in GHz frequency. In this paper, we demonstrate the SPPs excited at a plasma/vacuum interface in GHz frequency by the consistency of the simulated and theoretical results. With SPPs, plasma layer thicker than skin depth can be penetrated with w < wp, which is a complement of wave propagation theory in plasma. We also discuss the influences of thickness d, collision frequency Γ, and different plasma frequencies on SPPs. For plasma frequencies with large difference, common numerical methods have difficulties in result comparison under the same mesh size because of the computer capacity and memory. The analytical multilayer method used in the paper does not need to generate mesh, so the studies of plasma frequencies with large difference can be carried out. The simulation shows that the SPPs can be excited for an arbitrary plasma frequency. We believe the study will be beneficial for the problem of wave propagation in plasma science and technology.
  • [1]
    Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109
    [2]
    Zhou L et al 2005 Phys. Rev. Lett. 94 243905
    [3]
    El Sherbini A M et al 2019 Plasma Sci. Technol. 21 015502
    [4]
    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
    [5]
    Luo X G and Ishihara T 2004 Appl. Phys. Lett. 84 4780
    [6]
    Gao P et al 2015 Appl. Phys. Lett. 106 093110
    [7]
    Yeatman E M 1996 Biosens. Bioelectron. 11 635
    [8]
    Long M Z et al 2016 Nanoscale 8 6290
    [9]
    Zeng S W et al 2014 Chem. Soc. Rev. 43 3426
    [10]
    Robertson W M et al 1993 Opt. Lett. 18 528
    [11]
    Zheng G G et al 2016 Opt. Lett. 41 1582
    [12]
    Gric T and Hess O 2017 J. Appl. Phys. 122 193105
    [13]
    Yaqoob M Z et al 2019 J. Opt. Soc. Am. B 36 204
    [14]
    Jiang L Y et al 2019 Chin. Opt. Lett. 17 020008
    [15]
    Gric T 2016 J. Electromagn. Wave 30 721
    [16]
    Messiaen A M and Vandenplas P E 1967 Electron. Lett. 3 26
    [17]
    Chen K M and Lin C C 1968 Proc. IEEE 56 1595
    [18]
    Lin C and Chen K M 1969 IEEE Trans. Antennas Propag.17 675
    [19]
    Freeman E M, Lin C C and Chen K M 1971 Proc. Inst. Electr.Eng. 118 1748
    [20]
    Jin Y and Li B M 2014 Plasma Sci. Technol. 16 50
    [21]
    Wang C S, Li X A and Jiang B H 2015 Appl. Phys. Lett. 106 102901
    [22]
    Wang C S et al 2015 Phys. Plasmas 22 063501
    [23]
    Kong F R et al 2017 IEEE Trans. Plasma Sci. 45 381
    [24]
    Morabito D D 2002 IPN Prog. Rep. 42–150 1
    [25]
    Chen Z Q et al 2015 Chin. Phys. B 24 025203
    [26]
    Chen Z Q et al 2017 J. Appl. Phys. 122 093301
    [27]
    Chen Z Q et al 2018 Sci. Sin. Phys. Mech. Astronom. 48 125201
    [28]
    Chen Z Q et al 2019 IEEE Trans. Plasma Sci. (https://doi.org/10.1109/TPS.2019.2894028)
    [29]
    Chen Z Q et al 2010 Chin. Phys. Lett. 27 025205
    [30]
    Inan U S and Gołkowski M 2010 Principles of Plasma Physics for Engineers and Scientists (Cambridge: Cambridge University Press)
    [31]
    Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
    [32]
    Huba J 2016 NRL Plasma Formulary (Washington: Naval Research Lab.)
    [33]
    Dresser M J 1968 J. Appl. Phys. 39 338
    [34]
    Lin T C and Sproul L K 2006 Comput. Fluids 35 703
  • Related Articles

    [1]Dingchen LI, Jiawei LI, Chuan LI, Ming ZHANG, Pengyu WANG, Zhi LIU, Yong YANG, Kexun YU. Multi-point discharge model: study on corona discharge of double-ended needle in large space[J]. Plasma Science and Technology, 2023, 25(3): 035402. DOI: 10.1088/2058-6272/ac92cd
    [2]Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26
    [3]Cheng PAN (潘成), Ju TANG (唐炬), Dibo WANG (王邸博), Yi LUO (罗毅), Ran ZHUO (卓然), Mingli FU (傅明利). Decay characters of charges on an insulator surface after different types of discharge[J]. Plasma Science and Technology, 2017, 19(7): 75503-075503. DOI: 10.1088/2058-6272/aa6436
    [4]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [5]JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
    [6]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [7]CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04
    [8]LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05
    [9]A. A. AZOOZ, Sabah I. WAYSI. An Alternative Empirical Formula for Positive Corona Discharge I-V Characteristics in Point-to-Plate Electrode Geometry[J]. Plasma Science and Technology, 2014, 16(3): 211-218. DOI: 10.1088/1009-0630/16/3/07
    [10]HAO Lixia, WANG Wei, ZHAN Huamao, HAN Xiaohui, DENG Lihong. Effect of space charge on the propagation path of air gap discharge[J]. Plasma Science and Technology, 2011, 13(6): 714-718.
  • Cited by

    Periodical cited type(4)

    1. Liu, S.-J., Wang, F., Hu, D. et al. Transport characteristic evaluation of runaway electrons in an ITER disruption simulation. Plasma Physics and Controlled Fusion, 2024, 66(8): 085016. DOI:10.1088/1361-6587/ad5c9a
    2. Long, T., Diamond, P., Ke, R. et al. The role of shear flow collapse and enhanced turbulence spreading in edge cooling approaching the density limit. Nuclear Fusion, 2024, 64(6): 066011. DOI:10.1088/1741-4326/ad3e15
    3. Liu, F.X., Yan, W., Chen, Z.Y. et al. Effect of 2/1 tearing mode on radiation asymmetry during disruptions on J-TEXT. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114152
    4. Li, K., Li, Z., Jiang, Z. Simulation on the suppression effect of external passive field on runaway electrons on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401841

    Other cited types(0)

Catalog

    Article views (196) PDF downloads (229) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return