Advanced Search+
Qiao WANG (王乔), Liyun MA (马丽云). Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency[J]. Plasma Science and Technology, 2019, 21(10): 105001. DOI: 10.1088/2058-6272/ab307a
Citation: Qiao WANG (王乔), Liyun MA (马丽云). Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency[J]. Plasma Science and Technology, 2019, 21(10): 105001. DOI: 10.1088/2058-6272/ab307a

Theoretical demonstration of surface plasmon polaritons in plasma/vacuum interface in GHz frequency

Funds: The authors acknowledge the financial support of National Natural Science Foundation of China (Nos. 11405020, 61520106013, 51661145025, 61727816).
More Information
  • Received Date: June 22, 2019
  • Revised Date: July 04, 2019
  • Accepted Date: July 18, 2019
  • Negative permittivity of the material may lead to the enhanced radiation of an antenna embedded in a finite plasma, which suggests a potential way to solve blackout problem in space technology. However, the enhanced radiation phenomenon is still lack of strict theoretical investigations of surface plasmon polaritons (SPPs) in plasma in GHz frequency. In this paper, we demonstrate the SPPs excited at a plasma/vacuum interface in GHz frequency by the consistency of the simulated and theoretical results. With SPPs, plasma layer thicker than skin depth can be penetrated with w < wp, which is a complement of wave propagation theory in plasma. We also discuss the influences of thickness d, collision frequency Γ, and different plasma frequencies on SPPs. For plasma frequencies with large difference, common numerical methods have difficulties in result comparison under the same mesh size because of the computer capacity and memory. The analytical multilayer method used in the paper does not need to generate mesh, so the studies of plasma frequencies with large difference can be carried out. The simulation shows that the SPPs can be excited for an arbitrary plasma frequency. We believe the study will be beneficial for the problem of wave propagation in plasma science and technology.
  • [1]
    Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109
    [2]
    Zhou L et al 2005 Phys. Rev. Lett. 94 243905
    [3]
    El Sherbini A M et al 2019 Plasma Sci. Technol. 21 015502
    [4]
    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
    [5]
    Luo X G and Ishihara T 2004 Appl. Phys. Lett. 84 4780
    [6]
    Gao P et al 2015 Appl. Phys. Lett. 106 093110
    [7]
    Yeatman E M 1996 Biosens. Bioelectron. 11 635
    [8]
    Long M Z et al 2016 Nanoscale 8 6290
    [9]
    Zeng S W et al 2014 Chem. Soc. Rev. 43 3426
    [10]
    Robertson W M et al 1993 Opt. Lett. 18 528
    [11]
    Zheng G G et al 2016 Opt. Lett. 41 1582
    [12]
    Gric T and Hess O 2017 J. Appl. Phys. 122 193105
    [13]
    Yaqoob M Z et al 2019 J. Opt. Soc. Am. B 36 204
    [14]
    Jiang L Y et al 2019 Chin. Opt. Lett. 17 020008
    [15]
    Gric T 2016 J. Electromagn. Wave 30 721
    [16]
    Messiaen A M and Vandenplas P E 1967 Electron. Lett. 3 26
    [17]
    Chen K M and Lin C C 1968 Proc. IEEE 56 1595
    [18]
    Lin C and Chen K M 1969 IEEE Trans. Antennas Propag.17 675
    [19]
    Freeman E M, Lin C C and Chen K M 1971 Proc. Inst. Electr.Eng. 118 1748
    [20]
    Jin Y and Li B M 2014 Plasma Sci. Technol. 16 50
    [21]
    Wang C S, Li X A and Jiang B H 2015 Appl. Phys. Lett. 106 102901
    [22]
    Wang C S et al 2015 Phys. Plasmas 22 063501
    [23]
    Kong F R et al 2017 IEEE Trans. Plasma Sci. 45 381
    [24]
    Morabito D D 2002 IPN Prog. Rep. 42–150 1
    [25]
    Chen Z Q et al 2015 Chin. Phys. B 24 025203
    [26]
    Chen Z Q et al 2017 J. Appl. Phys. 122 093301
    [27]
    Chen Z Q et al 2018 Sci. Sin. Phys. Mech. Astronom. 48 125201
    [28]
    Chen Z Q et al 2019 IEEE Trans. Plasma Sci. (https://doi.org/10.1109/TPS.2019.2894028)
    [29]
    Chen Z Q et al 2010 Chin. Phys. Lett. 27 025205
    [30]
    Inan U S and Gołkowski M 2010 Principles of Plasma Physics for Engineers and Scientists (Cambridge: Cambridge University Press)
    [31]
    Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
    [32]
    Huba J 2016 NRL Plasma Formulary (Washington: Naval Research Lab.)
    [33]
    Dresser M J 1968 J. Appl. Phys. 39 338
    [34]
    Lin T C and Sproul L K 2006 Comput. Fluids 35 703
  • Related Articles

    [1]Domen PAUL, Miran MOZETIČ, Rok ZAPLOTNIK, Alenka VESEL, Gregor PRIMC, Denis ÐONLAGIČ. The penetration depth of atomic radicals in tubes with catalytic surface properties[J]. Plasma Science and Technology, 2024, 26(7): 075510. DOI: 10.1088/2058-6272/ad3952
    [2]Mingxiang GAO, Baojun WANG, Bin GUO. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas[J]. Plasma Science and Technology, 2023, 25(9): 095001. DOI: 10.1088/2058-6272/acd09e
    [3]Baojun WANG (王宝军), Shunshun ZHU (朱顺顺), Bin GUO (郭斌). Surface plasmon polaritons in plasma- dielectric-magnetic plasma structure[J]. Plasma Science and Technology, 2020, 22(10): 105002. DOI: 10.1088/2058-6272/ab9e5c
    [4]J KRISTOF, T AOSHIMA, M BLAJAN, K SHIMIZU. Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment[J]. Plasma Science and Technology, 2019, 21(6): 64001-064001. DOI: 10.1088/2058-6272/aafde6
    [5]M SHAHMANSOURI, A P MISRA. Surface plasmon oscillations in a semi-bounded semiconductor plasma[J]. Plasma Science and Technology, 2018, 20(2): 25001-025001. DOI: 10.1088/2058-6272/aa9213
    [6]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]ZHANG Xiangnan (张向楠), LIU Guiqiang (刘桂强), LIU Zhengqi (刘正奇), HU Ying (胡莹), CAI Zhengjie (蔡正杰). Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array[J]. Plasma Science and Technology, 2015, 17(12): 1027-1031. DOI: 10.1088/1009-0630/17/12/08
    [9]ZHU Yuanfeng(祝远锋), CHEN Mingyang(陈明阳), WANG Hua(王华), ZHANG Yongkang(张永康), YANG Jichang(杨继昌). Design of a Surface-Plasmon-Resonance Sensor Based on a Microstructured Optical Fiber with Annular-Shaped Holes[J]. Plasma Science and Technology, 2014, 16(9): 867-872. DOI: 10.1088/1009-0630/16/9/11
    [10]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
  • Cited by

    Periodical cited type(2)

    1. Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024. DOI:10.1016/j.ijleo.2024.171819
    2. Wei, G., Nie, Q., Zhang, Z. et al. Plasma-based GHz tunable bandstop filter. Physics of Plasmas, 2022, 29(8): 0089331. DOI:10.1063/5.0091487

    Other cited types(0)

Catalog

    Article views (196) PDF downloads (229) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return