Advanced Search+
Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248
Citation: Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248

Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet

Funds: This work is supported by the National Science Foundation through the grant CBET-1066486.
More Information
  • Received Date: May 23, 2019
  • Revised Date: July 09, 2019
  • Accepted Date: July 14, 2019
  • UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X) (0–0) band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source. The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied. Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species. Stark broadening of the hydrogen Balmer emission line (Hβ) was used to estimate the electron density ne in the jets. For both He/N2 and He/O2 jets, ne was estimated to be on the order of 1015 cm−3. The effects of plasma power and gas flow rate were also studied. With increase in N2 and O2 flow rates, ne tended to decrease. Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets. The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0× 1016 molecules/cm3 at x=4 mm (from the jet orifice) and 1.8×1016 molecules/cm3 at x=3 mm, respectively. Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions. The presence of strong emissions of the N+2 bands in both He/N2 and He/O2 plasma jets, as against the absence of the N+2 emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N+2 in these He plasma jets.
  • [1]
    Esplugas S, Yue P L and Pervez M I 1994 Water Res. 28 1323
    [2]
    Masten S J and Davies S H R 1994 Environ. Sci. Technol.28 180
    [3]
    Wang C et al 2004 Appl. Spectrosc. 58 734
    [4]
    Wang C 2013 Cavity ringdown spectroscopy of plasma species ed P K Chu and X P Lu Low Temperature Plasma Technology: Methods and Applications (Boca Raton, FL:CRC Press)
    [5]
    Wang C et al 2009 Plasma Sources Sci. Technol. 18 025030
    [6]
    Wang C, Srivastava N and Dibble T S 2009 Appl. Phys. Lett.95 051501
    [7]
    Zhao G et al 2010 Plasma Sci. Technol. 12 166
    [8]
    Srivastava N, Wang C and Dibble T S 2009 Eur. Phys. J. D 54 77
    [9]
    Fuh C A et al 2016 J. Appl. Phys. 120 163303
    [10]
    Attri P et al 2015 Sci. Rep. 5 9332
    [11]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [12]
    Jeong J Y et al 1998 Plasma Sources Sci. Technol. 7 282
    [13]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 R265
    [14]
    Lu X et al 2009 Appl. Phys. Lett. 95 181501
    [15]
    Lu X P et al 2008 Appl. Phys. Lett. 92 151504
    [16]
    Kong M G et al 2009 New J. Phys. 11 115012
    [17]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [18]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [19]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [20]
    Graves D B 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
    [21]
    Ono R and Oda T 2001 IEEE Trans. Ind. Appl. 37 709
    [22]
    Ono R and Oda T 2003 J. Appl. Phys. 93 5876
    [23]
    O’Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
    [24]
    Wang C and Wu W 2014 Combust Flame. 161 2073
    [25]
    Liu D X et al 2010 Plasma Source Sci. Technol. 19 025018
    [26]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 032001
    [27]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [28]
    Sasaki K, Ishigame H and Nishiyama S 2015 Eur. Phys. J.Appl. Phys. 71 20807
    [29]
    Yue Y, Pei X and Lu X 2016 J. Appl. Phys. 119 033301
    [30]
    Ono R et al 2016 J. Phys. D: Appl. Phys. 49 305401
    [31]
    Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
    [32]
    Wang Z et al 2019 J. Phys. D: Appl. Phys. 52 105203
    [33]
    Srivastava N and Wang C 2011 IEEE Trans. Plasma Sci.39 918
    [34]
    Srivastava N and Wang C 2011 J. Appl. Phys. 110 053304
    [35]
    Wang C and Srivastava N 2010 Eur. Phys. J. D 60 465
    [36]
    Olenici-Craciunescu S B et al 2011 Spectrochim. Acta Part B 66 268
    [37]
    Xiong Q et al 2009 Phys. Plasmas 16 043505
    [38]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [39]
    Ono R, Teramoto Y and Oda T 2010 Plasma Sources Sci.Technol. 19 015009
    [40]
    Griem H 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [41]
    Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta Part B 58 1489
    [42]
    Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl.25 37
    [43]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [44]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [45]
    Balcon N, Aanesland A and Boswell R 2007 Plasma Sources Sci. Technol. 16 217
    [46]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [47]
    Goldman A and Gillis J R 1981 J. Quant. Spectrosc. Radia.Transf. 25 111
    [48]
    Harb T, Kedzierski W and McConkey J W 2001 J. Chem.Phys. 115 5507
    [49]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Proc.21 459
  • Cited by

    Periodical cited type(17)

    1. Akram, M.R., Semnani, A. Nonradiating Resonances: Anapoles Enabling Highly Efficient Plasma Jets Within Dielectric Structures. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(1): 352-360. DOI:10.1109/TMTT.2024.3443716
    2. Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639
    3. Wang, A., Li, S., Zhang, S. et al. Enhancing CFRP laminates with plasma jet arrays: A study of interlaminar mechanical properties. Polymer Composites, 2024, 45(11): 10190-10203. DOI:10.1002/pc.28466
    4. Wang, L., Zhao, H., Liu, J. et al. Experimental study of the influence of O2 content on electrical and optical characteristics of He/CF4 APPJ. Journal of Physics D: Applied Physics, 2024, 57(30): 305204. DOI:10.1088/1361-6463/ad4366
    5. Wang, L., Zhao, H., Liu, J. et al. Influence of O2 content on surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet to improve surface flashover strength. Physics of Plasmas, 2024, 31(8): 083509. DOI:10.1063/5.0218575
    6. Antipov, S.N., Gadzhiev, M.K., Il’ichev, M.V. et al. Analysis of Gas Composition of a Cold Plasma Jet Generated on the Basis of Atmospheric Pressure Microwave Discharge. Plasma Physics Reports, 2024, 50(5): 653-658. DOI:10.1134/S1063780X24600488
    7. Bertin, M., Leitao, E.M., Bickerton, S. et al. A review of polymer surface modification by cold plasmas toward bulk functionalization. Plasma Processes and Polymers, 2024, 21(5): 2300208. DOI:10.1002/ppap.202300208
    8. Antipov, S.N., Gadzhiev, M.Kh., Il’ichev, M.V. et al. Analysis of gas composition of a cold plasma jet generated on the basis of atmospheric pressure microwave discharge | [Исследование состава газа холодной плазменной струи, генерируемой СВЧ-разрядом атмосферного давления]. Applied Physics, 2024, 24(1): 5-12. DOI:10.51368/1996-0948-2024-1-5-12
    9. Zhao, H., Wang, L., Liu, J. Effect of CF4 concentration on the discharge dynamics and reactive species distribution of atmospheric nanosecond pulsed He plasma jet. Journal of Physics D: Applied Physics, 2023, 56(49): 495201. DOI:10.1088/1361-6463/acf6d1
    10. Li, G., Jiang, H., Yang, F. A Novel Diffuse Plasma Jet Without Airflow and Its Application in the Real-Time Surface Modification of Titanium. IEEE Transactions on Plasma Science, 2022, 50(11): 4603-4611. DOI:10.1109/TPS.2022.3211094
    11. Semnani, A., Kabir, K.S. A Highly Efficient Microwave Plasma Jet Based on Evanescent-Mode Cavity Resonator Technology. IEEE Transactions on Plasma Science, 2022, 50(10): 3516-3524. DOI:10.1109/TPS.2022.3202509
    12. Liu, J., Wang, L., Lin, X. et al. Influence of different O2/H2O ratios on He atmospheric pressure plasma jet impinging on a dielectric surface. Journal of Physics D: Applied Physics, 2022, 55(12): 125203. DOI:10.1088/1361-6463/ac4137
    13. Liu, J., Wang, L., Zhang, R. et al. Study of the Influence of Oxygen on the Hydrodynamic Behavior of Helium Atmospheric Pressure Plasma Jet by Shadowgraphy System. IEEE Transactions on Plasma Science, 2022, 50(2): 341-348. DOI:10.1109/TPS.2022.3140234
    14. Liu, J., Wang, L., Zhang, R. Effect of CF4 ratio on the interaction of atmospheric nanosecond pulsed He plasma jet with a dielectric material. Journal of Applied Physics, 2021, 130(13): 133303. DOI:10.1063/5.0064990
    15. Inoue, I., Aizawa, T., Ishijima, T. et al. Measurement of the density and rotational temperature of OH in a saturated water vapor slot-excited microwave plasma. Journal of Physics D: Applied Physics, 2021, 54(19): 195201. DOI:10.1088/1361-6463/abe440
    16. Li, Z.-K., Chen, L., Yang, C. et al. A Study on Emission Spectral Diagnosis of Ar/CH4 Plasma Jet | [Ar/CH4等离子体射流发射光谱诊断研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(5): 1398-1403. DOI:10.3964/j.issn.1000-0593(2021)05-1398-06
    17. Parigger, C.G., Helstern, C.M., Jordan, B.S. et al. Laser-plasma spectroscopy of hydroxyl with applications. Molecules, 2020, 25(4): 988. DOI:10.3390/molecules25040988

    Other cited types(0)

Catalog

    Article views (287) PDF downloads (315) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return