Citation: | Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248 |
[1] |
Esplugas S, Yue P L and Pervez M I 1994 Water Res. 28 1323
|
[2] |
Masten S J and Davies S H R 1994 Environ. Sci. Technol.28 180
|
[3] |
Wang C et al 2004 Appl. Spectrosc. 58 734
|
[4] |
Wang C 2013 Cavity ringdown spectroscopy of plasma species ed P K Chu and X P Lu Low Temperature Plasma Technology: Methods and Applications (Boca Raton, FL:CRC Press)
|
[5] |
Wang C et al 2009 Plasma Sources Sci. Technol. 18 025030
|
[6] |
Wang C, Srivastava N and Dibble T S 2009 Appl. Phys. Lett.95 051501
|
[7] |
Zhao G et al 2010 Plasma Sci. Technol. 12 166
|
[8] |
Srivastava N, Wang C and Dibble T S 2009 Eur. Phys. J. D 54 77
|
[9] |
Fuh C A et al 2016 J. Appl. Phys. 120 163303
|
[10] |
Attri P et al 2015 Sci. Rep. 5 9332
|
[11] |
Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
|
[12] |
Jeong J Y et al 1998 Plasma Sources Sci. Technol. 7 282
|
[13] |
Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 R265
|
[14] |
Lu X et al 2009 Appl. Phys. Lett. 95 181501
|
[15] |
Lu X P et al 2008 Appl. Phys. Lett. 92 151504
|
[16] |
Kong M G et al 2009 New J. Phys. 11 115012
|
[17] |
Fridman G et al 2008 Plasma Process. Polym. 5 503
|
[18] |
Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
|
[19] |
Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
|
[20] |
Graves D B 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
|
[21] |
Ono R and Oda T 2001 IEEE Trans. Ind. Appl. 37 709
|
[22] |
Ono R and Oda T 2003 J. Appl. Phys. 93 5876
|
[23] |
O’Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
|
[24] |
Wang C and Wu W 2014 Combust Flame. 161 2073
|
[25] |
Liu D X et al 2010 Plasma Source Sci. Technol. 19 025018
|
[26] |
Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 032001
|
[27] |
Martens T et al 2008 Appl. Phys. Lett. 92 041504
|
[28] |
Sasaki K, Ishigame H and Nishiyama S 2015 Eur. Phys. J.Appl. Phys. 71 20807
|
[29] |
Yue Y, Pei X and Lu X 2016 J. Appl. Phys. 119 033301
|
[30] |
Ono R et al 2016 J. Phys. D: Appl. Phys. 49 305401
|
[31] |
Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
|
[32] |
Wang Z et al 2019 J. Phys. D: Appl. Phys. 52 105203
|
[33] |
Srivastava N and Wang C 2011 IEEE Trans. Plasma Sci.39 918
|
[34] |
Srivastava N and Wang C 2011 J. Appl. Phys. 110 053304
|
[35] |
Wang C and Srivastava N 2010 Eur. Phys. J. D 60 465
|
[36] |
Olenici-Craciunescu S B et al 2011 Spectrochim. Acta Part B 66 268
|
[37] |
Xiong Q et al 2009 Phys. Plasmas 16 043505
|
[38] |
Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
|
[39] |
Ono R, Teramoto Y and Oda T 2010 Plasma Sources Sci.Technol. 19 015009
|
[40] |
Griem H 1974 Spectral Line Broadening by Plasmas (New York: Academic)
|
[41] |
Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta Part B 58 1489
|
[42] |
Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl.25 37
|
[43] |
Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
|
[44] |
Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
|
[45] |
Balcon N, Aanesland A and Boswell R 2007 Plasma Sources Sci. Technol. 16 217
|
[46] |
Liu D X et al 2011 Appl. Phys. Lett. 98 221501
|
[47] |
Goldman A and Gillis J R 1981 J. Quant. Spectrosc. Radia.Transf. 25 111
|
[48] |
Harb T, Kedzierski W and McConkey J W 2001 J. Chem.Phys. 115 5507
|
[49] |
Herron J T and Green D S 2001 Plasma Chem. Plasma Proc.21 459
|
1. | Akram, M.R., Semnani, A. Nonradiating Resonances: Anapoles Enabling Highly Efficient Plasma Jets Within Dielectric Structures. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(1): 352-360. DOI:10.1109/TMTT.2024.3443716 | |
2. | Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639 | |
3. | Wang, A., Li, S., Zhang, S. et al. Enhancing CFRP laminates with plasma jet arrays: A study of interlaminar mechanical properties. Polymer Composites, 2024, 45(11): 10190-10203. DOI:10.1002/pc.28466 | |
4. | Wang, L., Zhao, H., Liu, J. et al. Experimental study of the influence of O2 content on electrical and optical characteristics of He/CF4 APPJ. Journal of Physics D: Applied Physics, 2024, 57(30): 305204. DOI:10.1088/1361-6463/ad4366 | |
5. | Wang, L., Zhao, H., Liu, J. et al. Influence of O2 content on surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet to improve surface flashover strength. Physics of Plasmas, 2024, 31(8): 083509. DOI:10.1063/5.0218575 | |
6. | Antipov, S.N., Gadzhiev, M.K., Il’ichev, M.V. et al. Analysis of Gas Composition of a Cold Plasma Jet Generated on the Basis of Atmospheric Pressure Microwave Discharge. Plasma Physics Reports, 2024, 50(5): 653-658. DOI:10.1134/S1063780X24600488 | |
7. | Bertin, M., Leitao, E.M., Bickerton, S. et al. A review of polymer surface modification by cold plasmas toward bulk functionalization. Plasma Processes and Polymers, 2024, 21(5): 2300208. DOI:10.1002/ppap.202300208 | |
8. | Antipov, S.N., Gadzhiev, M.Kh., Il’ichev, M.V. et al. Analysis of gas composition of a cold plasma jet generated on the basis of atmospheric pressure microwave discharge | [Исследование состава газа холодной плазменной струи, генерируемой СВЧ-разрядом атмосферного давления]. Applied Physics, 2024, 24(1): 5-12. DOI:10.51368/1996-0948-2024-1-5-12 | |
9. | Zhao, H., Wang, L., Liu, J. Effect of CF4 concentration on the discharge dynamics and reactive species distribution of atmospheric nanosecond pulsed He plasma jet. Journal of Physics D: Applied Physics, 2023, 56(49): 495201. DOI:10.1088/1361-6463/acf6d1 | |
10. | Li, G., Jiang, H., Yang, F. A Novel Diffuse Plasma Jet Without Airflow and Its Application in the Real-Time Surface Modification of Titanium. IEEE Transactions on Plasma Science, 2022, 50(11): 4603-4611. DOI:10.1109/TPS.2022.3211094 | |
11. | Semnani, A., Kabir, K.S. A Highly Efficient Microwave Plasma Jet Based on Evanescent-Mode Cavity Resonator Technology. IEEE Transactions on Plasma Science, 2022, 50(10): 3516-3524. DOI:10.1109/TPS.2022.3202509 | |
12. | Liu, J., Wang, L., Lin, X. et al. Influence of different O2/H2O ratios on He atmospheric pressure plasma jet impinging on a dielectric surface. Journal of Physics D: Applied Physics, 2022, 55(12): 125203. DOI:10.1088/1361-6463/ac4137 | |
13. | Liu, J., Wang, L., Zhang, R. et al. Study of the Influence of Oxygen on the Hydrodynamic Behavior of Helium Atmospheric Pressure Plasma Jet by Shadowgraphy System. IEEE Transactions on Plasma Science, 2022, 50(2): 341-348. DOI:10.1109/TPS.2022.3140234 | |
14. | Liu, J., Wang, L., Zhang, R. Effect of CF4 ratio on the interaction of atmospheric nanosecond pulsed He plasma jet with a dielectric material. Journal of Applied Physics, 2021, 130(13): 133303. DOI:10.1063/5.0064990 | |
15. | Inoue, I., Aizawa, T., Ishijima, T. et al. Measurement of the density and rotational temperature of OH in a saturated water vapor slot-excited microwave plasma. Journal of Physics D: Applied Physics, 2021, 54(19): 195201. DOI:10.1088/1361-6463/abe440 | |
16. | Li, Z.-K., Chen, L., Yang, C. et al. A Study on Emission Spectral Diagnosis of Ar/CH4 Plasma Jet | [Ar/CH4等离子体射流发射光谱诊断研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(5): 1398-1403. DOI:10.3964/j.issn.1000-0593(2021)05-1398-06 | |
17. | Parigger, C.G., Helstern, C.M., Jordan, B.S. et al. Laser-plasma spectroscopy of hydroxyl with applications. Molecules, 2020, 25(4): 988. DOI:10.3390/molecules25040988 |