Advanced Search+
Yinhai PAN (潘银海), Bowen ZHENG (郑博文), Wei ZHANG (张伟), Zejie YIN (阴泽杰). Development of the HL-2M digital pulse analysis system[J]. Plasma Science and Technology, 2019, 21(11): 115601. DOI: 10.1088/2058-6272/ab341d
Citation: Yinhai PAN (潘银海), Bowen ZHENG (郑博文), Wei ZHANG (张伟), Zejie YIN (阴泽杰). Development of the HL-2M digital pulse analysis system[J]. Plasma Science and Technology, 2019, 21(11): 115601. DOI: 10.1088/2058-6272/ab341d

Development of the HL-2M digital pulse analysis system

Funds: This work is supported by National Natural Science Foundation of China (No. 1157518).
More Information
  • Received Date: April 08, 2019
  • Revised Date: July 20, 2019
  • Accepted Date: July 21, 2019
  • A digital pulse analysis system is an important diagnostic system in nuclear physics experimental research. In response to the demand for reflecting the particle state in a nuclear physics experiment, we have designed and developed a real-time digital pulse analysis system and applied it to the digital nuclear pulse waveform discrimination of different detectors in the HL- 2M tokamak. The system is based on the peripheral component interconnect extensions for instrumentation (PXI) platform, while its software was written in LABVIEW. The key technologies involved in the system implementation include digital pulse analysis technology, digital discrimination technology, pulse height analysis technology, etc. The system has been applied to the plastic scintillator detector at the Neutron Source Lab of the University of Science and Technology of China. And the experimental results indicate that the system can discriminate between neutron (n) particles and gamma (γ) particles well when used to measure the plastic scintillator detector.
  • [1]
    Liu Y Q et al 2005 Nucl. Fusion 45 1131
    [2]
    Yan L W et al 2011 Nucl. Fusion 51 094016
    [3]
    Li Q and HL-2M Team 2015 Fusion Eng. Des. 96–97 338
    [4]
    Zheng G Y et al 2016 Nucl. Fusion 56 126013
    [5]
    Chuang L S et al 1981 J. Nondestruct. Eval. 2 139
    [6]
    Harrington T M and Marshall J H 1970 IEEE Trans. Nucl. Sci.17 102
    [7]
    Kalyna J and Taylor I J 1970 Nucl. Instrum. Methods 88 277
    [8]
    Xu X F et al 2013 Plasma Sci. Technol. 15 417
    [9]
    Zhang W et al 2018 Plasma Sci. Technol. 20 45601
    [10]
    Riva M et al 2013 Fusion Eng. Des. 88 1178
    [11]
    Riva M et al 2011 Fusion Eng. Des. 86 1191
    [12]
    Liu P X et al 2002 An UDP-based protocol for internet robots Proc. 4th World Congress on Intelligent Control and Automation Shanghai (Shanghai, China, 10–14 June 2002)vol 59
    [13]
    Pozzi S A, Bourne M M and Clarke S D 2013 Nucl. Instrum.Methods Phys. Res. Sect. A 723 19
    [14]
    Moser S W et al 1993 Rad. Phys. Chem. 41 31
    [15]
    Hirshman S P and Sigmar D J 1981 Nucl. Fusion 21 1079
    [16]
    Fallu-Labruyere A et al 2007 Nucl. Instrum. Methods Phys.Res. Sect. A 579 247
    [17]
    Moszyński M et al 1993 Nucl. Instrum. Methods Phys. Res.Sect. A 336 587
  • Cited by

    Periodical cited type(3)

    1. Zhang, W., Wu, T.Y., Li, Y.G. et al. High-precision digital time-amplitude analysis system for the neutron Time-Of-Flight spectrometer in HL-2M. Journal of Instrumentation, 2023, 18(9): P09014. DOI:10.1088/1748-0221/18/09/P09014
    2. Wen, X., Zhu, R., He, Z. et al. A Linear Recurrence-Based Pseudorandom Number Generator Optimized for Detector Emulators. IEEE Transactions on Nuclear Science, 2023, 70(8): 2139-2147. DOI:10.1109/TNS.2023.3285251
    3. Wen, X., Zhu, R., He, Z. et al. Development of a novel simulated neutron pulse signal generator for flux measurement. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022. DOI:10.1016/j.nima.2022.166998

    Other cited types(0)

Catalog

    Article views (153) PDF downloads (126) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return