Advanced Search+
Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
Citation: Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938

The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 51722705 and 51837008).
More Information
  • Received Date: May 14, 2019
  • Revised Date: August 01, 2019
  • Accepted Date: August 04, 2019
  • In this paper, the influences of gas doping (O2, N2, Air) on the concentrations of reactive species and bactericidal effects induced by a He plasma jet are studied. Firstly, results show that gas doping causes an increase in voltage and a decrease in current compared with the pure He discharge under the same discharge power, which might be attributed to the different chemical characteristics of O2 and N2 and verified by the changes in the gaseous reactive species shown in the optical emission spectroscopy (OES) and Fourier transform infrared (FTIR) spectroscopy. Secondly, the concentrations of aqueous reactive oxygen species (ROS) and reactive nitrogen species (RNS) are tightly related to the addition of O2 and N2 into the working gas. The concentrations of aqueous NO2- and NO3- significantly increase while the concentrations of aqueous ROS decrease with the admixture of N2. The addition of O2 has little effect on the concentrations of NO2- and NO3- and pH values; however, the addition of O2 increases the concentration of O2- and deceases the concentrations of H2O2 and OH. Finally, the results of bactericidal experiments demonstrate that the inactivation efficiency of the four types of plasma jets is He+O2>He+Air>He>He+N2, which is in accordance with the changing trend of the concentration of aqueous O2-. Simultaneously to the better understanding of the formation and removal mechanisms of reactive species in the plasma–liquid interaction, these results also prove the effectiveness of regulating the concentrations of aqueous reactive species and the bacteria inactivation effects by gas doping.
  • [1]
    Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001
    [2]
    Reuter S et al 2018 J. Phys. D: Appl. Phys. 51 233001
    [3]
    Li Y et al 2017 Sci. Rep. 7 45781
    [4]
    Khlyustova A et al 2019 Front. Chem. Sci. Eng. 13 238
    [5]
    Lu X P et al 2009 IEEE Trans Plasma Sci. 37 668
    [6]
    Pan J et al 2013 J. Endodont. 39 105
    [7]
    Chauvin J et al 2017 Sci. Rep. 7 4562
    [8]
    Heinlin J et al 2010 J. Eur. Acad. Dermatol. 25 1
    [9]
    Lu X P et al 2016 Phy. Rep. 630 1
    [10]
    Guo J et al 2015 Food Control. 50 482
    [11]
    Kong M G et al 2009 New J. Phys. 11 115012
    [12]
    Weltmann K D et al 2012 Contrib. Plasma Phys. 52 644
    [13]
    Jeong J Y et al 2000 J. Phys. Chem. A 104 8027
    [14]
    Liu D X et al 2010 Plasma Process. Polym. 7 846
    [15]
    Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201
    [16]
    Yang A J et al 2014 Phys. Plasmas. 21 083501
    [17]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [18]
    Liu D X et al 2016 High Volt. 1 81
    [19]
    Shaw D et al 2016 Plasma Sources Sci. Technol. 25 065018
    [20]
    Moix F et al 2016 Plasma Process. Polym. 13 236
    [21]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [22]
    Locke B R et al 2011 Plasma Sources Sci. Technol. 20 034006
    [23]
    Xu H et al 2017 J. Phys. D: Appl. Phys. 50 245201
    [24]
    Norberg S A et al 2014 J. Phys. D: Appl. Phys. 47 475203
    [25]
    Tresp H et al 2013 J. Phys. D: Appl. Phys. 46 435401
    [26]
    Kurake N et al 2017 J. Phys. D: Appl. Phys. 50 155202
    [27]
    Tani A et al 2012 Appl. Phys. Lett. 100 254103
    [28]
    Takamatsu T et al 2014 RSC Adv. 4 39901
    [29]
    Dikalov S et al 1997 Biochem. Bioph. Res. Commum. 230 54
    [30]
    Chen C et al 2017 J. Phys. D: Appl. Phys. 50 445208
    [31]
    Takai E et al 2013 J. Phys. D: Appl. Phys. 46 295402
    [32]
    Ikawa S et al 2016 J. Phys. D: Appl. Phys. 49 425401
    [33]
    Wu H Y et al 2012 Plasma Process. Polym. 9 417
    [34]
    Souza D et al 2006 Mini Rev. Org. Chem. 3 155
    [35]
    Nie D et al 2011 Spectrochimica Acta. A 79 1896
    [36]
    Yang Y et al 2012 J. Electrostat. 70 356
    [37]
    Joh H M et al 2014 Sci. Rep. 4 6638
    [38]
    Nersisyan G et al 2004 Plasma Sources Sci. Technol. 13 582
    [39]
    Luo H Y et al 2008 J. Phys. D: Appl. Phys. 41 205205
    [40]
    Liu D X et al 2016 Sci. Rep. 6 23737
    [41]
    Liu Z C et al 2015 J. Phys. D: Appl. Phys. 48 495201
    [42]
    Ikawa S et al 2010 Plasma Process. Polym. 7 33
    [43]
    Liu F X et al 2010 Plasma Process. Polym. 7 231
    [44]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [45]
    Winter J et al 2013 J. Phys. D: Appl. Phys. 46 295401
    [46]
    Winter J et al 2014 J. Phys. D: Appl. Phys. 47 285401
    [47]
    Chen Z Y et al 2018 J. Phys. D: Appl. Phys. 51 325201
    [48]
    Anderson C E et al 2016 Plasma Chem. Plasma Process.36 1393
    [49]
    Chen C et al 2014 Plasma Chem. Plasma Process. 34 403
    [50]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [51]
    Bielski B H J et al 1985 J. Phys. Chem. Ref. Data. 14 1041
    [52]
    van Gils C A J et al 2013 J. Phys. D: Appl. Phys. 46 175203
    [53]
    Korshunov S S et al 2002 Molecular Microbiology. 43 95
  • Related Articles

    [1]Yun LING, Dong DAI, Jiaxin CHANG, Buang WANG. Effect of liquid surface depression size on discharge characteristics and chemical distribution in the plasma-liquid anode system[J]. Plasma Science and Technology, 2024, 26(9): 094002. DOI: 10.1088/2058-6272/ad2b38
    [2]Yikang JIA, Tianhui LI, Rui ZHANG, Pengyu ZHAO, Zifeng WANG, Min CHEN, Li GUO, Dingxin LIU. Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations[J]. Plasma Science and Technology, 2024, 26(1): 015502. DOI: 10.1088/2058-6272/ad0c1f
    [3]Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4
    [4]Han XU, Shaoshuai GUO, Hao ZHANG, Kai XIE. Effect of rotating liquid samples on dynamic propagation and aqueous activation of a helium plasma jet[J]. Plasma Science and Technology, 2022, 24(8): 085403. DOI: 10.1088/2058-6272/ac630d
    [5]Sansan PENG (彭三三), Dehui XU (许德晖), Miao QI (祁苗), Rong LIU (刘蓉), Xinying ZHANG (张新颖), Huaiyan ZHANG (张怀延), Bolun PANG (庞波伦), Jin ZHANG (章金), Hao ZHANG (张浩), Zhijie LIU (刘志杰). Investigation of optimum discharge characteristics and chemical activity of AC driven air plasma jet and its anticancer effect[J]. Plasma Science and Technology, 2021, 23(12): 125401. DOI: 10.1088/2058-6272/ac2482
    [6]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [7]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [8]Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27
    [9]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [10]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08
  • Cited by

    Periodical cited type(5)

    1. Zhang, X., Ma, X., Li, M. et al. Preparation of nano-silver electromagnetic interference shielding functional coating on PC+ABS plastic via Ar/H2 mixed atmospheric pressure plasma jet. Plasma Processes and Polymers, 2024, 21(3): 2300129. DOI:10.1002/ppap.202300129
    2. Xiang, H., Yue, X., Chu, Y. et al. Rapid Fabrication of N-, Cu-, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorganic Chemistry, 2024. DOI:10.1021/acs.inorgchem.4c03089
    3. Zeng, Z., Qiao, J., Zhang, R. et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3(4): 582-607. DOI:10.1002/smm2.1118
    4. Chang, J., Zhai, H., Hu, Z. et al. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110269
    5. Zhou, Y., Zhang, J., Xia, G. et al. Preparation of N-doped graphite oxide for supercapacitors by NH3cold plasma. Plasma Science and Technology, 2022, 24(4): 044008. DOI:10.1088/2058-6272/ac48e0

    Other cited types(0)

Catalog

    Article views (189) PDF downloads (228) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return