Citation: | Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938 |
[1] |
Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001
|
[2] |
Reuter S et al 2018 J. Phys. D: Appl. Phys. 51 233001
|
[3] |
Li Y et al 2017 Sci. Rep. 7 45781
|
[4] |
Khlyustova A et al 2019 Front. Chem. Sci. Eng. 13 238
|
[5] |
Lu X P et al 2009 IEEE Trans Plasma Sci. 37 668
|
[6] |
Pan J et al 2013 J. Endodont. 39 105
|
[7] |
Chauvin J et al 2017 Sci. Rep. 7 4562
|
[8] |
Heinlin J et al 2010 J. Eur. Acad. Dermatol. 25 1
|
[9] |
Lu X P et al 2016 Phy. Rep. 630 1
|
[10] |
Guo J et al 2015 Food Control. 50 482
|
[11] |
Kong M G et al 2009 New J. Phys. 11 115012
|
[12] |
Weltmann K D et al 2012 Contrib. Plasma Phys. 52 644
|
[13] |
Jeong J Y et al 2000 J. Phys. Chem. A 104 8027
|
[14] |
Liu D X et al 2010 Plasma Process. Polym. 7 846
|
[15] |
Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201
|
[16] |
Yang A J et al 2014 Phys. Plasmas. 21 083501
|
[17] |
Martens T et al 2008 Appl. Phys. Lett. 92 041504
|
[18] |
Liu D X et al 2016 High Volt. 1 81
|
[19] |
Shaw D et al 2016 Plasma Sources Sci. Technol. 25 065018
|
[20] |
Moix F et al 2016 Plasma Process. Polym. 13 236
|
[21] |
Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
|
[22] |
Locke B R et al 2011 Plasma Sources Sci. Technol. 20 034006
|
[23] |
Xu H et al 2017 J. Phys. D: Appl. Phys. 50 245201
|
[24] |
Norberg S A et al 2014 J. Phys. D: Appl. Phys. 47 475203
|
[25] |
Tresp H et al 2013 J. Phys. D: Appl. Phys. 46 435401
|
[26] |
Kurake N et al 2017 J. Phys. D: Appl. Phys. 50 155202
|
[27] |
Tani A et al 2012 Appl. Phys. Lett. 100 254103
|
[28] |
Takamatsu T et al 2014 RSC Adv. 4 39901
|
[29] |
Dikalov S et al 1997 Biochem. Bioph. Res. Commum. 230 54
|
[30] |
Chen C et al 2017 J. Phys. D: Appl. Phys. 50 445208
|
[31] |
Takai E et al 2013 J. Phys. D: Appl. Phys. 46 295402
|
[32] |
Ikawa S et al 2016 J. Phys. D: Appl. Phys. 49 425401
|
[33] |
Wu H Y et al 2012 Plasma Process. Polym. 9 417
|
[34] |
Souza D et al 2006 Mini Rev. Org. Chem. 3 155
|
[35] |
Nie D et al 2011 Spectrochimica Acta. A 79 1896
|
[36] |
Yang Y et al 2012 J. Electrostat. 70 356
|
[37] |
Joh H M et al 2014 Sci. Rep. 4 6638
|
[38] |
Nersisyan G et al 2004 Plasma Sources Sci. Technol. 13 582
|
[39] |
Luo H Y et al 2008 J. Phys. D: Appl. Phys. 41 205205
|
[40] |
Liu D X et al 2016 Sci. Rep. 6 23737
|
[41] |
Liu Z C et al 2015 J. Phys. D: Appl. Phys. 48 495201
|
[42] |
Ikawa S et al 2010 Plasma Process. Polym. 7 33
|
[43] |
Liu F X et al 2010 Plasma Process. Polym. 7 231
|
[44] |
Liu D X et al 2011 Appl. Phys. Lett. 98 221501
|
[45] |
Winter J et al 2013 J. Phys. D: Appl. Phys. 46 295401
|
[46] |
Winter J et al 2014 J. Phys. D: Appl. Phys. 47 285401
|
[47] |
Chen Z Y et al 2018 J. Phys. D: Appl. Phys. 51 325201
|
[48] |
Anderson C E et al 2016 Plasma Chem. Plasma Process.36 1393
|
[49] |
Chen C et al 2014 Plasma Chem. Plasma Process. 34 403
|
[50] |
Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
|
[51] |
Bielski B H J et al 1985 J. Phys. Chem. Ref. Data. 14 1041
|
[52] |
van Gils C A J et al 2013 J. Phys. D: Appl. Phys. 46 175203
|
[53] |
Korshunov S S et al 2002 Molecular Microbiology. 43 95
|
1. | Kc, S.K., Ghimire, B., Hong, S.-H. et al. How to control the plasma jet production of reactive species for medical therapy? A topical review. Journal of Physics D: Applied Physics, 2025, 58(14): 143006. DOI:10.1088/1361-6463/adb316 | |
2. | Wu, J., Li, J., Chen, J. et al. Evolution from a guided-streamer mode to a continuous-discharge mode in an atmospheric pressure argon plasma jet. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113754 | |
3. | Li, Y., Bai, Y., Yu, D. et al. Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics. Chemical Research in Chinese Universities, 2024, 40(6): 1282-1289. DOI:10.1007/s40242-024-4112-7 | |
4. | Mozaffari, A., Parvinzadeh Gashti, M., Alimohammadi, F. et al. The Impact of Helium and Nitrogen Plasmas on Electrospun Gelatin Nanofiber Scaffolds for Skin Tissue Engineering Applications. Journal of Functional Biomaterials, 2024, 15(11): 326. DOI:10.3390/jfb15110326 | |
5. | Guo, L., Zhao, P., Huang, L. et al. Significance and Current Status of Plasma-activated Water for Microbial Inactivation | [等离子体活化水用于微生物消杀的意义和现状]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(7): 2955-2971. DOI:10.13336/j.1003-6520.hve.20231324 | |
6. | Wang, F., Liang, Z., Zhou, Z. et al. The Distribution of Active Substances and the Bacterial Inactivation Effect Induced by a Helium Microplasma. IEEE Transactions on Plasma Science, 2024, 52(8): 3111-3117. DOI:10.1109/TPS.2024.3470905 | |
7. | Jia, Y., Li, T., Zhang, R. et al. Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations. Plasma Science and Technology, 2024, 26(1): 015502. DOI:10.1088/2058-6272/ad0c1f | |
8. | Wang, Y., Liu, Y., Zhao, Y. et al. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Food Research International, 2023. DOI:10.1016/j.foodres.2023.113204 | |
9. | Polito, J., Herrera Quesada, M.J., Stapelmann, K. et al. Reaction mechanism for atmospheric pressure plasma treatment of cysteine in solution. Journal of Physics D: Applied Physics, 2023, 56(39): 395205. DOI:10.1088/1361-6463/ace196 | |
10. | Wang, T., Wang, X., Wang, J. et al. Investigation on Localized Etching Behaviors of Polymer Film by Atmospheric Pressure Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(3): 679-696. DOI:10.1007/s11090-023-10315-0 | |
11. | Chen, Z., Cui, W., He, Y. Mechanism of Hydrogen Peroxide Formation by Alternating Current and Direct Current Plasma Jets. IEEE Transactions on Plasma Science, 2022, 50(11): 4628-4635. DOI:10.1109/TPS.2022.3211999 | |
12. | Wu, K., Zhao, N., Wu, J. et al. Complicated streamer dynamics in petal-like patterns formed on the substrate downstream of an argon plasma jet. Plasma Processes and Polymers, 2022, 19(9): 2200003. DOI:10.1002/ppap.202200003 | |
13. | Liu, Y., Liu, D., Luo, S. et al. 1D fluid model of the interaction between helium APPJ and deionized water. Journal of Physics D: Applied Physics, 2022, 55(25): 255204. DOI:10.1088/1361-6463/ac5eef | |
14. | Shi, X., Liu, S., Jiang, R. et al. Development and characterization of touchable air plasma jet device for inactivation of oral bacteria. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105405 | |
15. | Li, C., Xu, D.-L., Xie, W.-Q. et al. Increasing the ·oH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution. Chinese Physics B, 2022, 31(4): 048706. DOI:10.1088/1674-1056/ac523d | |
16. | Xi, W., Guo, L., Liu, D. et al. Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.127658 | |
17. | Xu, G., Geng, Y., Li, X. et al. Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of target. Plasma Science and Technology, 2021, 23(9): 095401. DOI:10.1088/2058-6272/ac071a | |
18. | Wang, Z., Qi, Y., Guo, L. et al. The bactericidal effects of plasma-activated saline prepared by the combination of surface discharge plasma and plasma jet. Journal of Physics D: Applied Physics, 2021, 54(38): 385202. DOI:10.1088/1361-6463/ac0d72 | |
19. | Wenske, S., Lackmann, J.-W., Busch, L.M. et al. Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry. Journal of Applied Physics, 2021, 129(19): 193305. DOI:10.1063/5.0046685 | |
20. | LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e | |
21. | Ding, T., Xu, E., Liao, X. Inactivation of Bacteria by Cold Plasma. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_3 | |
22. | Xu, D., Chen, Z., Feng, R. et al. The Mechanism of LP-1 Myeloma Cell Inactivation by DC-Powered Plasma Treatment. Plasma Medicine, 2021, 11(4): 15-30. DOI:10.1615/PlasmaMed.2021040378 | |
23. | Liu, T., Zeng, Y., Xue, X. et al. He-Plasma Jet Generation and Its Application for E. coli Sterilization. Journal of Spectroscopy, 2021. DOI:10.1155/2021/6671531 |