Advanced Search+
Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
Citation: Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938

The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 51722705 and 51837008).
More Information
  • Received Date: May 14, 2019
  • Revised Date: August 01, 2019
  • Accepted Date: August 04, 2019
  • In this paper, the influences of gas doping (O2, N2, Air) on the concentrations of reactive species and bactericidal effects induced by a He plasma jet are studied. Firstly, results show that gas doping causes an increase in voltage and a decrease in current compared with the pure He discharge under the same discharge power, which might be attributed to the different chemical characteristics of O2 and N2 and verified by the changes in the gaseous reactive species shown in the optical emission spectroscopy (OES) and Fourier transform infrared (FTIR) spectroscopy. Secondly, the concentrations of aqueous reactive oxygen species (ROS) and reactive nitrogen species (RNS) are tightly related to the addition of O2 and N2 into the working gas. The concentrations of aqueous NO2- and NO3- significantly increase while the concentrations of aqueous ROS decrease with the admixture of N2. The addition of O2 has little effect on the concentrations of NO2- and NO3- and pH values; however, the addition of O2 increases the concentration of O2- and deceases the concentrations of H2O2 and OH. Finally, the results of bactericidal experiments demonstrate that the inactivation efficiency of the four types of plasma jets is He+O2>He+Air>He>He+N2, which is in accordance with the changing trend of the concentration of aqueous O2-. Simultaneously to the better understanding of the formation and removal mechanisms of reactive species in the plasma–liquid interaction, these results also prove the effectiveness of regulating the concentrations of aqueous reactive species and the bacteria inactivation effects by gas doping.
  • [1]
    Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001
    [2]
    Reuter S et al 2018 J. Phys. D: Appl. Phys. 51 233001
    [3]
    Li Y et al 2017 Sci. Rep. 7 45781
    [4]
    Khlyustova A et al 2019 Front. Chem. Sci. Eng. 13 238
    [5]
    Lu X P et al 2009 IEEE Trans Plasma Sci. 37 668
    [6]
    Pan J et al 2013 J. Endodont. 39 105
    [7]
    Chauvin J et al 2017 Sci. Rep. 7 4562
    [8]
    Heinlin J et al 2010 J. Eur. Acad. Dermatol. 25 1
    [9]
    Lu X P et al 2016 Phy. Rep. 630 1
    [10]
    Guo J et al 2015 Food Control. 50 482
    [11]
    Kong M G et al 2009 New J. Phys. 11 115012
    [12]
    Weltmann K D et al 2012 Contrib. Plasma Phys. 52 644
    [13]
    Jeong J Y et al 2000 J. Phys. Chem. A 104 8027
    [14]
    Liu D X et al 2010 Plasma Process. Polym. 7 846
    [15]
    Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201
    [16]
    Yang A J et al 2014 Phys. Plasmas. 21 083501
    [17]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [18]
    Liu D X et al 2016 High Volt. 1 81
    [19]
    Shaw D et al 2016 Plasma Sources Sci. Technol. 25 065018
    [20]
    Moix F et al 2016 Plasma Process. Polym. 13 236
    [21]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [22]
    Locke B R et al 2011 Plasma Sources Sci. Technol. 20 034006
    [23]
    Xu H et al 2017 J. Phys. D: Appl. Phys. 50 245201
    [24]
    Norberg S A et al 2014 J. Phys. D: Appl. Phys. 47 475203
    [25]
    Tresp H et al 2013 J. Phys. D: Appl. Phys. 46 435401
    [26]
    Kurake N et al 2017 J. Phys. D: Appl. Phys. 50 155202
    [27]
    Tani A et al 2012 Appl. Phys. Lett. 100 254103
    [28]
    Takamatsu T et al 2014 RSC Adv. 4 39901
    [29]
    Dikalov S et al 1997 Biochem. Bioph. Res. Commum. 230 54
    [30]
    Chen C et al 2017 J. Phys. D: Appl. Phys. 50 445208
    [31]
    Takai E et al 2013 J. Phys. D: Appl. Phys. 46 295402
    [32]
    Ikawa S et al 2016 J. Phys. D: Appl. Phys. 49 425401
    [33]
    Wu H Y et al 2012 Plasma Process. Polym. 9 417
    [34]
    Souza D et al 2006 Mini Rev. Org. Chem. 3 155
    [35]
    Nie D et al 2011 Spectrochimica Acta. A 79 1896
    [36]
    Yang Y et al 2012 J. Electrostat. 70 356
    [37]
    Joh H M et al 2014 Sci. Rep. 4 6638
    [38]
    Nersisyan G et al 2004 Plasma Sources Sci. Technol. 13 582
    [39]
    Luo H Y et al 2008 J. Phys. D: Appl. Phys. 41 205205
    [40]
    Liu D X et al 2016 Sci. Rep. 6 23737
    [41]
    Liu Z C et al 2015 J. Phys. D: Appl. Phys. 48 495201
    [42]
    Ikawa S et al 2010 Plasma Process. Polym. 7 33
    [43]
    Liu F X et al 2010 Plasma Process. Polym. 7 231
    [44]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [45]
    Winter J et al 2013 J. Phys. D: Appl. Phys. 46 295401
    [46]
    Winter J et al 2014 J. Phys. D: Appl. Phys. 47 285401
    [47]
    Chen Z Y et al 2018 J. Phys. D: Appl. Phys. 51 325201
    [48]
    Anderson C E et al 2016 Plasma Chem. Plasma Process.36 1393
    [49]
    Chen C et al 2014 Plasma Chem. Plasma Process. 34 403
    [50]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [51]
    Bielski B H J et al 1985 J. Phys. Chem. Ref. Data. 14 1041
    [52]
    van Gils C A J et al 2013 J. Phys. D: Appl. Phys. 46 175203
    [53]
    Korshunov S S et al 2002 Molecular Microbiology. 43 95
  • Cited by

    Periodical cited type(23)

    1. Kc, S.K., Ghimire, B., Hong, S.-H. et al. How to control the plasma jet production of reactive species for medical therapy? A topical review. Journal of Physics D: Applied Physics, 2025, 58(14): 143006. DOI:10.1088/1361-6463/adb316
    2. Wu, J., Li, J., Chen, J. et al. Evolution from a guided-streamer mode to a continuous-discharge mode in an atmospheric pressure argon plasma jet. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113754
    3. Li, Y., Bai, Y., Yu, D. et al. Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics. Chemical Research in Chinese Universities, 2024, 40(6): 1282-1289. DOI:10.1007/s40242-024-4112-7
    4. Mozaffari, A., Parvinzadeh Gashti, M., Alimohammadi, F. et al. The Impact of Helium and Nitrogen Plasmas on Electrospun Gelatin Nanofiber Scaffolds for Skin Tissue Engineering Applications. Journal of Functional Biomaterials, 2024, 15(11): 326. DOI:10.3390/jfb15110326
    5. Guo, L., Zhao, P., Huang, L. et al. Significance and Current Status of Plasma-activated Water for Microbial Inactivation | [等离子体活化水用于微生物消杀的意义和现状]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(7): 2955-2971. DOI:10.13336/j.1003-6520.hve.20231324
    6. Wang, F., Liang, Z., Zhou, Z. et al. The Distribution of Active Substances and the Bacterial Inactivation Effect Induced by a Helium Microplasma. IEEE Transactions on Plasma Science, 2024, 52(8): 3111-3117. DOI:10.1109/TPS.2024.3470905
    7. Jia, Y., Li, T., Zhang, R. et al. Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations. Plasma Science and Technology, 2024, 26(1): 015502. DOI:10.1088/2058-6272/ad0c1f
    8. Wang, Y., Liu, Y., Zhao, Y. et al. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Food Research International, 2023. DOI:10.1016/j.foodres.2023.113204
    9. Polito, J., Herrera Quesada, M.J., Stapelmann, K. et al. Reaction mechanism for atmospheric pressure plasma treatment of cysteine in solution. Journal of Physics D: Applied Physics, 2023, 56(39): 395205. DOI:10.1088/1361-6463/ace196
    10. Wang, T., Wang, X., Wang, J. et al. Investigation on Localized Etching Behaviors of Polymer Film by Atmospheric Pressure Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(3): 679-696. DOI:10.1007/s11090-023-10315-0
    11. Chen, Z., Cui, W., He, Y. Mechanism of Hydrogen Peroxide Formation by Alternating Current and Direct Current Plasma Jets. IEEE Transactions on Plasma Science, 2022, 50(11): 4628-4635. DOI:10.1109/TPS.2022.3211999
    12. Wu, K., Zhao, N., Wu, J. et al. Complicated streamer dynamics in petal-like patterns formed on the substrate downstream of an argon plasma jet. Plasma Processes and Polymers, 2022, 19(9): 2200003. DOI:10.1002/ppap.202200003
    13. Liu, Y., Liu, D., Luo, S. et al. 1D fluid model of the interaction between helium APPJ and deionized water. Journal of Physics D: Applied Physics, 2022, 55(25): 255204. DOI:10.1088/1361-6463/ac5eef
    14. Shi, X., Liu, S., Jiang, R. et al. Development and characterization of touchable air plasma jet device for inactivation of oral bacteria. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105405
    15. Li, C., Xu, D.-L., Xie, W.-Q. et al. Increasing the ·oH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution. Chinese Physics B, 2022, 31(4): 048706. DOI:10.1088/1674-1056/ac523d
    16. Xi, W., Guo, L., Liu, D. et al. Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.127658
    17. Xu, G., Geng, Y., Li, X. et al. Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of target. Plasma Science and Technology, 2021, 23(9): 095401. DOI:10.1088/2058-6272/ac071a
    18. Wang, Z., Qi, Y., Guo, L. et al. The bactericidal effects of plasma-activated saline prepared by the combination of surface discharge plasma and plasma jet. Journal of Physics D: Applied Physics, 2021, 54(38): 385202. DOI:10.1088/1361-6463/ac0d72
    19. Wenske, S., Lackmann, J.-W., Busch, L.M. et al. Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry. Journal of Applied Physics, 2021, 129(19): 193305. DOI:10.1063/5.0046685
    20. LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e
    21. Ding, T., Xu, E., Liao, X. Inactivation of Bacteria by Cold Plasma. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_3
    22. Xu, D., Chen, Z., Feng, R. et al. The Mechanism of LP-1 Myeloma Cell Inactivation by DC-Powered Plasma Treatment. Plasma Medicine, 2021, 11(4): 15-30. DOI:10.1615/PlasmaMed.2021040378
    23. Liu, T., Zeng, Y., Xue, X. et al. He-Plasma Jet Generation and Its Application for E. coli Sterilization. Journal of Spectroscopy, 2021. DOI:10.1155/2021/6671531

    Other cited types(0)

Catalog

    Article views (189) PDF downloads (228) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return