Citation: | Yanlin HU (扈延林), Zhongxi NING (宁中喜), Xiaoyu LIU (刘晓宇), Yanfeng CHU (初彦峰), Wei MAO (毛威), Yan SHEN (沈岩), Ximing ZHU (朱悉铭). Influence of heating on the discharge characteristics of a hollow cathode[J]. Plasma Science and Technology, 2020, 22(1): 15401-015401. DOI: 10.1088/2058-6272/ab472a |
[1] |
Keidar M et al 2014 Plasma Phys. Control. Fusion 57 014005
|
[2] |
Brandt T et al 2015 Simulation for an improvement of a downscaled HEMP thruster Proc. Joint Conf. of the 30th Int. Symp. on Space Technology and Science, 34th Int. Electric Propulsion Conf. and 6th Nano-satellite Symp. (Hyogo-Kobe, Japan: IEPC) 2015
|
[3] |
Wright W P and Ferrer P 2015 Prog. Aerospace Sci. 74 48
|
[4] |
Keller A et al 2015 IEEE Trans. Plasma Sci. 43 45
|
[5] |
Kornfeld G, Koch N and Harmann H P 2007 Physics and evolution of HEMP-thrusters Proc. of the 30th Int. Electric Propulsion Conf. (Florence, Italy: IEPC) 2007
|
[6] |
Li W B et al 2017 Vacuum 136 77
|
[7] |
Mikellides I G et al 2008 J. Propuls. Power 24 866
|
[8] |
Gessini P, Gabrie S B and Fearn D G 2001 The hollow cathode as a micro-ion thruster Proc. 27th Int. Electric Propulsion Conf. (Pasadena, CA: IEPC)
|
[9] |
Zhou H C and Zhang T P 2014 Vac. Cryogen. 20 243 (http://cnki.com.cn/Article/CJFDTotal-ZKDW201 404011.htm) (in Chinese)
|
[10] |
Devyatkov V N et al 2017 Vacuum 143 464
|
[11] |
Haršáni M et al 2017 Vacuum 139 1
|
[12] |
Iqbal M et al 2004 Vacuum 77 19
|
[13] |
Feng N et al 2016 High Volt. Eng. 42 1449 (in Chinese)
|
[14] |
Verhey T R, Soulas G C and Mackey J A 2017 Heater Validation for the NEXT-C Hollow Cathodes IEPC-2017-397 (Atlanta, GA: IEPC)
|
[15] |
Domonkos M T 1999 Evaluation of low-current orificed hollow cathodes PhD Thesis The University of Michigan
|
[16] |
Patterson M J and Foster J E 2001 Hollow cathode microthruster performance Proc. 27th Int. Electric Propulsion Conf. (Pasadena, CA: IEPC) 2001
|
[17] |
Patterson M J 2007 Robust low-cost cathode for commercial applications Proc. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Cincinnati, OH: AIAA) 2007
|
[18] |
Grubisic A N and Gabriel S B 2007 Preliminary thrust characterization of a T5 hollow cathode Proc. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Cincinnati, OH: AIAA) 2007 (https://doi.org/10.2514/6.2007-5194)
|
[19] |
Pedrini D et al 2018 IEEE Trans. Plasma Sci. 46 296
|
[20] |
Lev D R and Alon G 2018 IEEE Trans. Plasma Sci. 46 311
|
[21] |
Lev D et al 2017 Low current heaterless hollow cathode development overview Proc. 35th Int. Electric Propulsion Conf. (Atlanta, GA: IEPC) 2017
|
[22] |
Ning Z X et al 2009 Plasma Sci. Technol. 11 194
|
[23] |
Ning Z X et al 2018 Vacuum 155 470
|
[24] |
Ouyang L et al 2016 J. Propuls. Technol. 37 1195 (http://cnki.com.cn/Article/CJFDTotal-TJJS201606026.htm) (in Chinese)
|
[25] |
Ning Z X et al 2019 J. Propuls. Power 35 87
|
[26] |
Ning Z X et al 2011 Appl. Phys. Lett. 99 221502
|
[27] |
Zhang H G et al 2019 IEEE Trans. Plasma Sci. 47 1487
|
[28] |
Goebel D M et al 2004 Hollow cathode and keeper-region plasma measurements using ultra-fast miniature scanning probes Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Fort Lauderdale, FL:AIAA) 2004
|
[29] |
Katz I et al 2008 IEEE Trans. Plasma Sci. 36 2199
|
[30] |
Polk J et al 2004 Temperature distributions in hollow cathode emitters Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Fort Lauderdale, FL: AIAA) 2004
|
[1] | Feng LIU (刘峰), Yue ZHUANG (庄越), Haijing CHU (储海靖), Zhi FANG (方志), Wenchun WANG (王文春). The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry[J]. Plasma Science and Technology, 2021, 23(6): 64002-064002. DOI: 10.1088/2588-6272/abe3e1 |
[2] | Xingyue DUAN (段兴跃), Xiong YANG (杨雄), Mousen CHENG (程谋森), Ning GUO (郭宁), Xiaokang LI (李小康), Moge WANG (王墨戈), Dawei GUO (郭大伟). The far-field plasma characterization in a 600 W Hall thruster plume by laser-induced fluorescence[J]. Plasma Science and Technology, 2020, 22(5): 55501-055501. DOI: 10.1088/2058-6272/ab6487 |
[3] | Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6 |
[4] | Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091 |
[5] | Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc |
[6] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[7] | Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506 |
[8] | WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11 |
[9] | M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11 |
[10] | FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11 |
1. | Chen, L., An, Y., Tan, C. et al. Properties of collisional plasma sheath with ionization source term and two-temperature electrons in an oblique magnetic field. Journal of Physics D: Applied Physics, 2024, 57(28): 285204. DOI:10.1088/1361-6463/ad32ed | |
2. | Chen, L., Cui, Z., Gao, W. et al. Effect of ion stress on properties of magnetized plasma sheath. Plasma Science and Technology, 2024, 26(2): 025001. DOI:10.1088/2058-6272/ad0d4f | |
3. | Chen, L., Tan, C.-Q., Cui, Z.-J. et al. Multi-ion magnetized sheath properties with non-extensive electron distribution | [电子非广延分布的多离子磁化等离子体鞘层特性]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(5): 055201. DOI:10.7498/aps.73.20231452 | |
4. | Zhao, X., Zhang, B., Li, S. et al. Effects of Secondary Electron Emission Coefficient on the Plasma Wall Potential with Super-extensive Electrons | [二次电子发射系数对含有超广延分布电子的等离子体器壁电势的影响]. Jisuan Wuli/Chinese Journal of Computational Physics, 2023, 43(4): 482-489. DOI:10.19596/j.cnki.1001-246x.8611 | |
5. | Jha, Y.P., Kumar, M., Malik, H.K. Bohm sheath criterion associated with magnetized collisional warm plasma containing secondary electrons and negative ions. Journal of Physics: Conference Series, 2023, 2484(1): 012001. DOI:10.1088/1742-6596/2484/1/012001 | |
6. | Jia, Y., Xie, K., Ding, Y. et al. Special issue on selected papers from CEPC 2021. Plasma Science and Technology, 2022, 24(7): 070101. DOI:10.1088/2058-6272/ac75c9 |