Advanced Search+
Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e
Citation: Marian NEGREA. Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field[J]. Plasma Science and Technology, 2020, 22(1): 15101-015101. DOI: 10.1088/2058-6272/ab491e

Diffusion of ions in an electrostatic stochastic field and a space-dependent unperturbed magnetic field

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research and training program 2014–2018 under Grant Agreement No. 633053.
More Information
  • Received Date: July 17, 2019
  • Revised Date: September 29, 2019
  • Accepted Date: September 29, 2019
  • We calculate the diffusion coefficients for ions moving in a prescribed electromagnetic field. The field is considered to be a superposition of an electrostatic stochastic field and a space-dependent and sheared magnetic field. We have considered as parameters involved in the calculation of the diffusion coefficients the shear ion Kubo number Ksion, the electrostatic Kubo number K, the parallel shear ion Kubo number Kzsion, and the parallel thermal ion Kubo number Kz ion. A geometrical parameter which is the measure of the product of the stochastic perpendicular correlation length and the gradient in the magnetic field strength (see definitions in the text) is found not to be important in our calculation. The results concerning the diffusion coefficients obtained in our model are in agreement with experimental data and with those corresponding to other models, and the neoclassical and anomalous values for the diffusion coefficients are obtained.
  • [1]
    Balescu R 1988 Transport Processes in Plasmas, vol I Classical Transport (Amsterdam: North-Holland)
    [2]
    Balescu R 1988 Transport Processes in Plasmas, vol II, Neoclassical Transport (Amsterdam: North-Holland)
    [3]
    Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239
    [4]
    Isichenko M B 1991 Plasma Phys. Contr. Fusion 33 795
    [5]
    Isichenko M B 1992 Rev. Mod. Phys. 64 961
    [6]
    Ottaviani M 1992 Europhys. Lett. 20 111
    [7]
    Misguich J H et al 1998 Physicalia Mag. 20 103
    [8]
    Petrisor I 2016 Rom. J. Phys. 61 217
    [9]
    Vlad M et al 1998 Phys. Rev. E 58 7359
    [10]
    Vlad M et al 2002 Nucl. Fusion 42 157
    [11]
    Negrea M, Petrisor I and Balescu R 2004 Phys. Rev. E 70 046409
    [12]
    Balescu R, Petrisor I and Negrea M 2005 Plasma Phys.Control. Fusion 47 2145
    [13]
    Negrea M and Petrisor I 2006 Physics AUC 16 28
    [14]
    Negrea M, Petrisor I and Weyssow B 2007 Plasma Phys.Control. Fusion 49 1767
    [15]
    Petrisor I, Negrea M and Weyssow B 2007 Phys. Scr. 75 1
    [16]
    Negrea M, Petrisor I and Constantinescu D 2010 Rom. J. Phys.55 1013
    [17]
    Petrisor I and Negrea M 2012 Physics AUC 22 68
    [18]
    Negrea M, Petrisor I and Constantinescu D 2014 Physics AUC 24 116
    [19]
    Negrea M, Petrisor I and Weyssow B 2008 J. Optoelectron.Adv. Mater. 10 1942
    [20]
    Negrea M, Petrisor I and Weyssow B 2008 Phys. Scr. 77 055502
    [21]
    Negrea M, Petrisor I and Weyssow B 2008 J. Optoelectron.Adv. Mater. 10 1946
    [22]
    Shalchi A, Negrea M and Petrisor I 2016 Phys. Plasmas 23 072306
    [23]
    Negrea M, Petrisor I and Shalchi A 2017 Phys. Plasmas 24 112303
    [24]
    Pometescu N, Negrea M and Rotaru P 1998 Plasma Phys.Control. Fusion 40 1383
    [25]
    Steinbrecher G et al 1997 Plasma Phys. Control. Fusion 39 2039
    [26]
    Petrisor I et al 2012 Proceedings of the 2012 International Conference on High Performance Computing and Simulation, HPCS 6266983 623–7
    [27]
    Horton W 1985 Plasma Phys. Contr. Fusion 27 937
    [28]
    Weyssow B, Misguich J H and Balescu R 1991 Plasma Phys.Control. Fusion 33 763
    [29]
    Balescu R 2005 Aspects on Anomalous Transport in Plasmas (Bristol: Institute of Physics Publishing)
    [30]
    Negrea M et al 2011 Plasma Phys. Control. Fusion 53 085022
    [31]
    Scott B D 2002 New J. Phys. 4 52.1
    [32]
    Wesson J 1997 Tokamaks 2nd edn (New Year: Oxford University Press)
    [33]
    Giroud C et al (the JET EFDA Contributors) 2007 Nucl.Fusion 47 313
    [34]
    Cimpoiasu R 2017 J. Nonlinear Math. Phys. 24 531
    [35]
    Cimpoiasu R 2014 Phys. Plasmas 21 042118
    [36]
    Negrea M 2019 Plasma Phys. Control. Fusion 61 065004
  • Related Articles

    [1]Hongjian Zhao, Zehua Guo, Xiangyu Wu, Yong Xiao. Machine learning for electrostatic plasma turbulence classification in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/add09e
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [4]Yafeng BAI (白亚锋), Shiyi ZHOU (周诗怡), Yushan ZENG (曾雨珊), Yihan LIANG (梁亦寒), Rong QI (齐荣), Wentao LI (李文涛), Ye TIAN(田野), Xiaoya LI (李晓亚), Jiansheng LIU (刘建胜). Optical measurements and analytical modeling of magnetic field generated in a dieletric target[J]. Plasma Science and Technology, 2018, 20(1): 14010-014010. DOI: 10.1088/2058-6272/aa8c6f
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06
    [7]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [8]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [9]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [10]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
  • Cited by

    Periodical cited type(3)

    1. Wu, K., Liu, J., Liu, S. et al. Analysis of anomalous transport with temporal fractional transport equations in a bounded domain. Chinese Physics B, 2023, 32(11): 110502. DOI:10.1088/1674-1056/acedf3
    2. Cimpoiasu, R., Constantinescu, R., Pauna, A.S. Solutions of the bullough–dodd model of scalar field through jacobi-type equations. Symmetry, 2021, 13(8): 1529. DOI:10.3390/sym13081529
    3. Petre, E., Selişteanu, D., Roman, M. Advanced nonlinear control strategies for a fermentation bioreactor used for ethanol production. Bioresource Technology, 2021. DOI:10.1016/j.biortech.2021.124836

    Other cited types(0)

Catalog

    Article views (211) PDF downloads (271) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return