Advanced Search+
In-Mok YANG, Jun-Seok NAM, Min-Kyu CHOI, Jun-Ho SEO, Shi-Young YANG. Effects of inter-electrode insertion on the performance and thermal flow fields of a hollow-electrode plasma torch[J]. Plasma Science and Technology, 2020, 22(1): 15403-015403. DOI: 10.1088/2058-6272/ab4922
Citation: In-Mok YANG, Jun-Seok NAM, Min-Kyu CHOI, Jun-Ho SEO, Shi-Young YANG. Effects of inter-electrode insertion on the performance and thermal flow fields of a hollow-electrode plasma torch[J]. Plasma Science and Technology, 2020, 22(1): 15403-015403. DOI: 10.1088/2058-6272/ab4922

Effects of inter-electrode insertion on the performance and thermal flow fields of a hollow-electrode plasma torch

Funds: This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2016M1A2A2940152).
More Information
  • Received Date: April 20, 2019
  • Revised Date: September 26, 2019
  • Accepted Date: September 29, 2019
  • The effects of inter-electrode insertion on the performance of a hollow-electrode plasma torch have been investigated by numerical analysis. Simulation results revealed that when inter-electrodes are inserted, the arc voltages and plasma powers increase due to the increase in the arc length. In addition, it was predicted that thermal efficiency can be improved with the increase in plasma power by injecting plasma gases through the gaps between inter-electrodes. These unique effects of inter-electrode insertion are a result of the plasma temperatures adjusting themselves to increase arc voltages when the arc column is contracted radially by increasing gas-flow rate or decreasing inter-electrode diameter.
  • [1]
    Heberlein J and Murphy A B 2008 J. Phys. D: Appl. Phys. 41 053001
    [2]
    Murata M et al 2005 Nippon Steel Tech. Rep. 92 30 (www.nipponsteel.com/en/tech/report/nsc/pdf/n9206.pdf )
    [3]
    Minutillo M, Perna A and Bona D D 2009 Energy Convers.Manag. 50 2837
    [4]
    Chang J S 2009 Int. J. Plasma Environ. Sci. Technol. 3 67
    [5]
    Tzeng C C et al 1998 J. Hazard. Mater. 58 207
    [6]
    Deckers J 2014 The innovative plasma tilting furnace for industrial treatment of radioactive waste-14420 WM2014 Conf. Proc. (Phoenix, Arizona, 2–6 March 2014) (Tempe AZ: WM Symposia Inc.)
    [7]
    Fauchais P and Vardelle A 1997 IEEE Trans. Plasma Sci.25 1258
    [8]
    Krogh O, Carlile R N and Nowlin R N 1995 Plasma Chem.Plasma Process. 15 231
    [9]
    Garam J 2013 A study on design and manufacture of arc heater facility using computational fluid dynamics PhD Thesis Seoul National University (http://dcollection.snu.ac.kr/public_resource/pdf/000000012993_20191015233902.pdf )
    [10]
    Santen S et al 1985 Means for electrically heating gases US Patent No. 4543470US Patent and Trademark Office (https://patentimages.storage.googleapis.com/bc/b5/51/0fd180fce1e7f0/US4543470.pdf )
    [11]
    Patankar S V 1980 Computational Fluid Flow and Heat Transfer (New York: McGraw-Hill)
    [12]
    Trelles J P et al 2009 J. Therm. Spray Technol. 18 728
    [13]
    Launder B E and Spalding D B 1974 Comput. Methods Appl.Mech. Eng. 3 269
    [14]
    Boulos M I, Fauchais P and Wender E 1994 Thermal Plasmas:Fundamentals and Applications vol 1 (New York: Plenum Press)
    [15]
    Trelles J P, Pfender E and Heberlein J V R 2007 J. Phys. D: Appl. Phys. 40 5635
    [16]
    Hur M and Hong S H 2002 J. Phys. D: Appl. Phys. 35 1946
    [17]
    Paik S et al 1993 Plasma Chem. Plasma Process. 13 379
    [18]
    Hirsh M N and Oskam H J 1978 Gaseous Electronics: Electrical Discharges (New York: Academic)
    [19]
    Yang I M et al 2019 J. Korean Phys. Soc. 74 465
    [20]
    Sun H et al 2016 J. Phys. D: Appl. Phys. 49 055204
    [21]
    Wu Y et al 2016 J. Phys. D: Appl. Phys. 49 425202
    [22]
    Shaeffer J F 1978 AIAA J. 16 1068
  • Related Articles

    [1]Dianlin ZHENG (郑典麟), Kai ZHANG (张凯), Zhengying CUI (崔正英), Ping SUN (孙平), Chunfeng DONG (董春凤), Ping LU (卢平), Bingzhong FU (傅炳忠), Zetian LIU (刘泽田), Zhongbing SHI (石中兵), Qingwei YANG (杨青巍). High-speed VUV spectroscopy for edge impurity line emission measurements in HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105103. DOI: 10.1088/2058-6272/aacf3d
    [2]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [3]H R MIRZAEI, R AMROLLAHI. Design, simulation and construction of the Taban tokamak[J]. Plasma Science and Technology, 2018, 20(4): 45103-045103. DOI: 10.1088/2058-6272/aaa669
    [4]Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64
    [5]Hailong GAO (高海龙), Tao XU (徐涛), Zhongyong CHEN (陈忠勇), Ge ZHUANG (庄革). Plasma equilibrium calculation in J-TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(11): 115101. DOI: 10.1088/2058-6272/aa7f26
    [6]Min JIANG (蒋敏), Zhongbing SHI (石中兵), Yilun ZHU (朱逸伦). Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(8): 84001-084001. DOI: 10.1088/2058-6272/aa62f7
    [7]KE Xin (柯新), CHEN Zhipeng (陈志鹏), BA Weigang (巴为刚), SHU Shuangbao (舒双宝), GAO Li (高丽), ZHANG Ming (张明), ZHUANG Ge (庄革). The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 211-216. DOI: 10.1088/1009-0630/18/2/20
    [8]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [9]FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03
    [10]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
  • Cited by

    Periodical cited type(19)

    1. Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
    2. Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021
    3. Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672
    4. Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
    5. Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8
    6. Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486
    7. Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253
    8. Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253
    9. Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173
    10. Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4
    11. Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9
    12. Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573
    13. Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924
    14. Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841
    15. Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9
    16. Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321
    17. ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30
    18. Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8
    19. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (160) PDF downloads (175) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return