Advanced Search+
Xiuquan CAO (曹修全), Lin CHEN (陈林). Design and characteristics of a new type laminar plasma torch for materials processing[J]. Plasma Science and Technology, 2020, 22(1): 15402-015402. DOI: 10.1088/2058-6272/ab4c60
Citation: Xiuquan CAO (曹修全), Lin CHEN (陈林). Design and characteristics of a new type laminar plasma torch for materials processing[J]. Plasma Science and Technology, 2020, 22(1): 15402-015402. DOI: 10.1088/2058-6272/ab4c60

Design and characteristics of a new type laminar plasma torch for materials processing

Funds: The authors appreciate the supports of the major project of Zigong Science and Technology Bureau (No. 2018YYJC13 and No. 2017DZ10), the Talents Introduction Project of Sichuan University of Science and Engineering (No. 2017RCL37) and the Sichuan Provincial Key Lab of Process Equipment and Control’s Project (No. GK201802).
More Information
  • Received Date: June 20, 2019
  • Revised Date: October 07, 2019
  • Accepted Date: October 08, 2019
  • Laminar plasma jet (LPJ) generated by laminar plasma torch (LPT) has a favorable temperature and velocity distribution. Thus, it is superior to the turbulent plasma jet in material processing. However, most of the reported LPTs usually operate at a relatively low output power with a relatively low arc voltage and thermal efficiency, which limits its capabilities. In this context, this paper attempts to design a new type of high-power LPT with a relatively low arc current and a high thermal efficiency. In the first section, the design principle of the main components is studied and discussed in detail, and a new high-power LPT is proposed. Then, the experimental characteristics of the proposed high-power LPT are examined. Experimental results reveal the following characteristics of the proposed LPT. (1) The max jet length of the proposed LPT reaches at 540 mm. (2) Its mean arc voltage is higher than 290 V when the LPT works with arc currents lower than 200 A, leading to an output power greater than 50 kW. (3) The mean thermal efficiency is higher than 50%. Lastly, the proposed LPT has been applied to spheroidize the aluminum oxide powers. The experiment results for the production of spherical powders show that the proposed LPT has a good characteristic for material processing.
  • [1]
    Mostaghimi J and Boulos M I 2015 Plasma Chem. Plasma Process. 35 421
    [2]
    Chen M Z et al 2009 Plasma Sci. Technol. 11 62
    [3]
    Fabry F et al 2013 Waste Biomass Valor. 4 421
    [4]
    Heberlein J and Murphy A B 2008 J. Phys. D: Appl. Phys. 41 053001
    [5]
    Vardelle A et al 2015 Plasma Chem. Plasma Process. 35 491
    [6]
    Fauchais P et al 2015 Plasma Chem. Plasma Process. 35 511
    [7]
    Hao L and Lawrence J 2004 J. Phys. D: Appl. Phys. 37 86
    [8]
    Suresh K, Selvarajan V and Vijay M 2008 Vacuum 82 814
    [9]
    Shigeta M and Murphy A B 2011 J. Phys. D: Appl. Phys. 44 174025
    [10]
    Cao X Q et al 2016 Plasma Chem. Plasma Process. 36 693
    [11]
    Cao N et al 2015 J. Vis. 18 221
    [12]
    Pan W X et al 2001 Plasma Chem. Plasma Process. 21 23
    [13]
    Solonenko O P and Smirnov A V 2014 J. Phys.: Conf. Ser. 550 012017
    [14]
    Vilotijević M et al 2011 J. Mater. Process. Technol. 211 996
    [15]
    Pan W X et al 2000 Diam. Relat. Mater. 9 1682
    [16]
    Solonenko O P, Gulyaev I P and Smirnov A V 2011 J. Therm.Sci. Technol. 6 219
    [17]
    Pan W X et al 2006 Plasma Chem. Plasma Process. 26 335
    [18]
    Pan W X et al 2002 Plasma Chem. Plasma Process. 22 271
    [19]
    Chen X et al 2006 Pure Appl. Chem. 78 1253
    [20]
    Osaki K, Fukumasa O and Kobayashi A 2000 Vacuum 59 47
    [21]
    Solonenko O P, Kuxmin V I and Belashchenko V 2006 Plasmajet generating apparatus and method of use thereof US WO2006012165 A2
    [22]
    Cao X Q et al 2017 Plasma Sci. Technol. 19 075404
    [23]
    Chang L et al 2016 Plasma Sci. Technol. 18 1
    [24]
    Cao X Q et al 2016 Plasma Chem. Plasma Process. 36 881
    [25]
    Zhukov M F and Zasypkin I M 2007 Thermal Plasma Torches:Design, Characteristics, Application (Cambridge:Cambridge International Science Publishing)
    [26]
    Cao X Q et al 2017 Adv. Eng. Sci. 49 223
    [27]
    Cao X Q, Yu D P and Li C 2018 IEEE Trans. Plasma Sci.46 3017
  • Related Articles

    [1]Fangyuan LIU (刘方圆), Deping YU (余德平), Cheng LV (吕程), Yazhou DUAN (段亚洲), Yanjie ZHONG (钟严杰), Jin YAO (姚进). Experimental study on the jet characteristics of a steam plasma torch[J]. Plasma Science and Technology, 2018, 20(12): 125401. DOI: 10.1088/2058-6272/aad9f1
    [2]Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9
    [3]CAO Xiuquan (曹修全), YU Deping (余德平), XIANG Yong (向勇), YAO Jin (姚进), MIAO Jianguo (苗建国). Influence of the Laminar Plasma Torch Construction on the Jet Characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. DOI: 10.1088/1009-0630/18/7/07
    [4]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [5]CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21
    [6]M’hammed ABBAOUI, Andr′e LEFORT, Erwann CARVOU, Damien SALLAIS, James Brian Alexander MITCHELL, Noureddine BEN JEMAA. Formation of a 40 A DC Current Arc During the Opening of Silver Contacts[J]. Plasma Science and Technology, 2014, 16(5): 471-478. DOI: 10.1088/1009-0630/16/5/06
    [7]XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24
    [8]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [9]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [10]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (209) PDF downloads (186) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return