Citation: | Zihan PAN (潘子晗), Lei YE (叶雷), Shulou QIAN (钱树楼), Qiang SUN(孙强), Cheng WANG (王城), Taohong YE (叶桃红), Weidong XIA (夏维东). Comparison of Reynolds average Navier– Stokes turbulence models in numerical simulations of the DC arc plasma torch[J]. Plasma Science and Technology, 2020, 22(2): 25401-025401. DOI: 10.1088/2058-6272/ab4f00 |
[1] |
Scott D A, Kovitya P and Haddad G N 1989 J. Appl. Phys.66 5232
|
[2] |
Han P and Chen X 2001 Plasma Chem. Plasma Process 21 249
|
[3] |
Westhoff R and Szekely J 1991 J. Appl. Phys. 70 3455
|
[4] |
Ghorui S, Heberlein J V R and Pfender E 2007 J. Phys. D:Appl. Phys. 40 1966
|
[5] |
Li H P and Chen X 2001 J. Phys. D: Appl. Phys. 34 L99
|
[6] |
Li H P, Pfender E and Chen X 2003 J. Phys. D: Appl. Phys.36 1084
|
[7] |
Huang R Z et al 2011 IEEE Trans. Plasma Sci. 39 1974
|
[8] |
Chazelas C et al 2006 High Temp. Mater. Processes: Int.Quart. High-Technol. Plasma Processes 10 393
|
[9] |
Moreau E et al 2006 J. Therm. Spray Technol. 15 524
|
[10] |
Trelles J P and Heberlein J V R 2006 J. Therm. Spray Technol.15 563
|
[11] |
Shigeta M 2016 J. Phys. D: Appl. Phys. 49 493001
|
[12] |
Hsu K C, Etemadi K and Pfender E 1983 J. Appl. Phys.54 1293
|
[13] |
Gonzalez J J, Freton P and Gleizes A 2000 J. Phys. D: Appl.Phys. 35 3181
|
[14] |
Lago F et al 2004 J. Phys. D: Appl. Phys. 37 883
|
[15] |
Hur M and Hong S H 2002 J. Phys. D: Appl. Phys. 35 1946
|
[16] |
Park J M et al 2004 IEEE Trans. Plasma Sci. 32 479
|
[17] |
Huang R et al 2012 J. Therm. Spray Technol. 21 636
|
[18] |
Gleizes A, Gonzalez J J and Freton P 2005 J. Phys. D: Appl.Phys. 38 R153
|
[19] |
Menter F R and Esch T 2001 Elements of industrial heat transfer predictions Proc. 16th Brazilian Congress of Mechanical Engineering (Uberlandia, Brazil)
|
[20] |
Zhou Q H 2009 Numerical simulations of DC arc plasma torches PhD Thesis Fudan University, Shanghai, China (in Chinese)
|
[21] |
Zhou Q H et al 2008 J. Phys. D: Appl. Phys. 42 015210
|
[22] |
Shigeta M 2019 IEEJ Trans. Electr. Electron. Eng. 14 16
|
[23] |
Colombo V, Concetti A and Ghedini E 2007 Time dependent 3D large eddy simulation of a DC non-transferred arcplasma spraying torch with particle injections Proc. 200716th IEEE Int. Pulsed Power Conf. (Albuquerque, NM, USA, 17–22 June 2007) (Piscataway, NJ: IEEE) 1565(https://doi.org/10.1109/PPPS.2007.4652486)
|
[24] |
Shigeta M 2012 Plasma Sources Sci. Technol. 21 055029
|
[25] |
Shigeta M 2012 J. Phys. D: Appl. Phys. 46 015401
|
[26] |
Colombo V et al 2011 IEEE Trans. Plasma Sci. 39 2894
|
[27] |
Marchand C et al 2007 J. Therm. Spray Technol. 16 705
|
[28] |
Vardelle A et al 2008 Pure Appl. Chem. 80 1981
|
[29] |
Meillot E et al 2015 Surf. Coat. Technol. 268 257
|
[30] |
Trelles J P, Pfender E and Heberlein J 2006 Plasma Chem.Plasma Process. 26 557
|
[31] |
Trelles J P, Heberlein J V R and Pfender E 2007 J. Phys. D:Appl. Phys. 40 5937
|
[32] |
Trelles J P, Pfender E and Heberlein J V R 2007 J. Phys. D:Appl. Phys. 40 5635
|
[33] |
Trelles J P 2013 J. Phys. D: Appl. Phys. 46 255201
|
[34] |
Trelles J P 2014 IEEE Trans. Plasma Sci. 42 2852
|
[35] |
Trelles J P and Modirkhazeni S M 2014 Comput. Methods Appl. Mech. Eng. 282 87
|
[36] |
Murphy A B and Arundelli C J 1994 Plasma Chem. PlasmaProcess. 14 451
|
[37] |
Murphy A B 1995 Plasma Chem. Plasma Process. 15 279
|
[38] |
Bhuyan P J and Goswami K S 2007 IEEE Trans. Plasma Sci.35 1781
|
[39] |
Launder B E and Spalding D B 1972 Lectures in Mathematical Models of Turbulence (London: Acadamic)
|
[40] |
Orszag S A et al 1993 Renormalization group modelling andturbulence simulations ed M C Ronald et al Near-wallTurbulent Flows: Proc. Int. Conf. on Near-Wall TurbulentFlows (New York: Elsevier)
|
[41] |
Shih T H et al 1995 Comput. Fluids 24 227
|
[42] |
Menter F R 1994 AIAA J. 32 1598
|
[43] |
Launder B E 1989 Int. J. Heat Fluid Flow 10 282
|
[44] |
Wolfshtein M 1969 Int. J. Heat Mass Transfer 12 301
|
[45] |
Chen H C and Patel V C 2012 AIAA J. 26 641
|
[46] |
Jongen T and Gatski T B 1998 Int. J. Eng. Sci. 36 739
|
[47] |
Bauchire J M, Gonzalez J J and Gleizes A 1997 Plasma Chem.Plasma Process. 17 409
|
[48] |
Freton P et al 2011 J. Phys. D: Appl. Phys. 44 345202
|
[49] |
Liao M R et al 2018 High Volt. Eng. 44 926 (in Chinese)
|
[50] |
Liao M R, Li H and Xia W D 2016 J. Appl. Phys. 120 063304
|
[51] |
Fanara C 2005 IEEE Trans. Plasma Sci. 33 1072
|
[52] |
Jiao L Y 2012 The electric-probe diagnostics of the large-scalemagnetically rotating arc plasma MSc Thesis University of Science and Technology of China (in Chinese)
|
[53] |
Zhukov M F and Zasypkin I M 2007 Thermal Plasma Torches: Design, Characteristics, Applications (Cambridge: Cambridge International Science Publishing)
|
[54] |
Basse N T 2017 Fluids 2 30
|
[55] |
Gleizes A 2015 Plasma Chem. Plasma Process. 35 455
|
[56] |
Liu F Y et al 2018 Plasma Sci. Technol. 20 125401
|
[1] | Muzhi TAN, Jianqiang XU, Huarong DU, Jiaqi DONG, Huasheng XIE, Xueyun WANG, Xianli HUANG, Yumin WANG, Xiang GU, Bing LIU, Yuejiang SHI, Yunfeng LIANG, the EHL-2 Team. Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024008. DOI: 10.1088/2058-6272/adad1a |
[2] | Hongjian Zhao, Zehua Guo, Xiangyu Wu, Yong Xiao. Machine learning for electrostatic plasma turbulence classification in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/add09e |
[3] | A. PONOMARENKO, A. YASHIN, V. GUSEV, E. KISELEV, G. KURSKIEV, V. MINAEV, Y. PETROV, N. SAKHAROV, P. SHCHEGOLEV, E. TKACHENKO, N. ZHILTSOV. First results of turbulence investigation on Globus-M2 using radial correlation Doppler reflectometry[J]. Plasma Science and Technology, 2024, 26(10): 105101. DOI: 10.1088/2058-6272/ad5fe5 |
[4] | Weice WANG, Jun CHENG, Zhongbing SHI, Longwen YAN, Zhihui HUANG, Kaiyang YI, Na WU, Yu HE, Qian ZOU, Xi CHEN, Wen ZHANG, Jian CHEN, Lin NIE, Xiaoquan JI, Wulyu ZHONG. An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma[J]. Plasma Science and Technology, 2024, 26(3): 034018. DOI: 10.1088/2058-6272/ad1c76 |
[5] | Prince ALEX, Suraj Kumar SINHA. Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma[J]. Plasma Science and Technology, 2020, 22(8): 85402-085402. DOI: 10.1088/2058-6272/ab8b56 |
[6] | Min JIANG (蒋敏), Yuhong XU (许宇鸿), Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Wei CHEN (陈伟), Rui KE (柯锐), Jiquan LI (李继全), Xuantong DING (丁玄同), Jun CHENG (程钧), Xiaoquan JI (季小全), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Jie WEN (闻杰), Kairui FANG (方凯锐), Na WU (吴娜), Xiaoxue HE (何小雪), Anshu LIANG (梁桉树), Yi LIU (刘仪), Qingwei YANG (杨青巍), Min XU (许敏), HL-A Team. Multi-scale interaction between tearing modes and micro-turbulence in the HL-2A plasmas[J]. Plasma Science and Technology, 2020, 22(8): 80501-080501. DOI: 10.1088/2058-6272/ab8785 |
[7] | Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013 |
[8] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[9] | GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03 |
[10] | Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331. |
1. | Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86 |
2. | Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484 |
3. | Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566 |
4. | Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131 |
5. | Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949 |
6. | Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271 |
7. | Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588 |
8. | Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848 |
9. | Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744 |
10. | Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915 |