Advanced Search+
Hanyu WU (吴撼宇), Zhengzhong ZENG (曾正中), Mengtong QIU (邱孟通), Peitian CONG (丛培天), Jinhai ZHANG (张金海), Xinjun ZHANG (张信军), Ning GUO (郭宁). Experimental study of current loss of a single-hole post-hole convolute on the QG I generator[J]. Plasma Science and Technology, 2020, 22(1): 15602-015602. DOI: 10.1088/2058-6272/ab4f89
Citation: Hanyu WU (吴撼宇), Zhengzhong ZENG (曾正中), Mengtong QIU (邱孟通), Peitian CONG (丛培天), Jinhai ZHANG (张金海), Xinjun ZHANG (张信军), Ning GUO (郭宁). Experimental study of current loss of a single-hole post-hole convolute on the QG I generator[J]. Plasma Science and Technology, 2020, 22(1): 15602-015602. DOI: 10.1088/2058-6272/ab4f89

Experimental study of current loss of a single-hole post-hole convolute on the QG I generator

Funds: This work is supported by National Natural Science Foundation of China (Nos. 51790521, 11875224) and the Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Nos. SKLIPR1701Z, SKLIPR1901).
More Information
  • Received Date: June 12, 2019
  • Revised Date: October 13, 2019
  • Accepted Date: October 20, 2019
  • The post-hole convolute (PHC), which is used to transport and combine the pulse power flux, is a key component in huge pulsed power generators. Current loss at the PHC is a challenging problem for researchers. To explore a method of reducing the current loss, a single-hole PHC was designed for experiments on the current loss on the Qiang Guang I generator. The experimental results showed that the current loss at the single-hole PHC is related to the distance l between the vicinity of the cathode hole and the surface of the downstream side of the post. Meanwhile, a single-hole PHC with a blob cathode hole transmitted current more effectively than the PHC with a circle cathode hole. The relative current loss at the single-hole PHC with the cathode coated with gold foil was about 30%–50% of that with the cathode coated with nickel and titanium foil. The gap closing speed was also obtained from the current waveforms in the experiments. The speed was 5.74–14.52 cm μs−1 which was different from the classical plasma expansion velocity of 3 cm μs−1.
  • [1]
    Sinars D B et al 2008 Phys. Rev. Lett. 100 145002
    [2]
    Li Q et al 1999 China Nuclear Science Technology Report S3 108
    [3]
    Slutz S A et al 2010 Phys. Plasmas 17 056303
    [4]
    Lemke R W et al 2005 J. Appl. Phys. 98 073530
    [5]
    Davis J P 2006 J. Appl. Phys. 99 103512
    [6]
    Rose D V et al 2010 Phys. Rev. ST Accel. Beams 13 010402
    [7]
    McBride R D et al 2010 Phys. Rev. ST Accel. Beams 13 120401
    [8]
    Zou W K et al 2015 High Volt. Eng. 41 1844 (in Chinese)
    [9]
    Stygar W A et al 2007 Phys. Rev. ST Accel. Beams 10 030401
    [10]
    Stygar W A et al 2015 Phys. Rev. ST Accel. Beams 18 110401
    [11]
    Jennings C A et al 2010 IEEE Trans. Plasma Sci. 38 529
    [12]
    Gomez M R et al 2017 Phys. Rev. Accel. Beams 20 010401
    [13]
    VanDevender J P, Stinnett R W and Anderson R J 1981 Appl.Phys. Lett. 38 229
    [14]
    Wu H Y et al 2012 IEEE Trans. Plasma Sci. 40 1177
    [15]
    Wu H Y et al 2014 Plasma Sci. Technol. 16 625
    [16]
    Wu J et al 2010 IEEE Trans. Plasma Sci. 38 639
    [17]
    Qiu A C et al 2006 Acta Phys. Sin. 55 5917 (in Chinese)
    [18]
    Wang L P et al 2014 Phys. Plasmas 21 062706
    [19]
    Wang G Z et al 2014 Microelectronics 44 510 (in Chinese)
    [20]
    Huang T et al 2010 High Power Laser Part. Beams 22 897 (in Chinese)
    [21]
    Wu H Y et al 2019 J. Xi’an Jiaotong Univ. 53 135–40 (in Chinese)
    [22]
    VanDevender J P et al 2015 Phys. Rev. ST Accel. Beams 18 030401
    [23]
    Mazarakis M G et al 2013 Z driver post-hole convolute studies utilizing MYKONOS-V voltage adder Proc. 19th IEEE Pulsed Power Conf. (Piscataway, NJ: IEEE) 1
    [24]
    Madrid E A et al 2013 Phys. Rev. ST Accel. Beams 16 120401
    [25]
    Rose D V et al 2015 Phys. Rev. ST Accel. Beams 18 030402
    [26]
    Stinnett R W et al 1983 IEEE Trans. Plasma Sci. 11 216
    [27]
    Stygar W A et al 2009 Phys. Rev. ST Accel. Beams 12 120401
    [28]
    Mesyats G A and Proskurovsky D I 1989 Pulsed Electrical Discharge in Vacuum (New York: Springer)
    [29]
    Anan’ev S S et al 2008 Plasmas Phys. Rep. 34 574
    [30]
    Mao W M et al 2008 The Structure and Properties of Metallic Materials (Beijing: Tsinghua University Press) (in Chinese)
    [31]
    Wu H Y et al 2019 Acta Phys. Sin. 68 178401 (in Chinese)
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Article views (141) PDF downloads (145) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return