Advanced Search+
Zhen ZHENG (郑振), Nong XIANG (项农), Cheng YANG (杨程), Yingfeng XU (徐颖峰). Effects of fast ions produced by ICRF heating on the pressure at EAST[J]. Plasma Science and Technology, 2020, 22(2): 25101-025101. DOI: 10.1088/2058-6272/ab4ff5
Citation: Zhen ZHENG (郑振), Nong XIANG (项农), Cheng YANG (杨程), Yingfeng XU (徐颖峰). Effects of fast ions produced by ICRF heating on the pressure at EAST[J]. Plasma Science and Technology, 2020, 22(2): 25101-025101. DOI: 10.1088/2058-6272/ab4ff5

Effects of fast ions produced by ICRF heating on the pressure at EAST

Funds: This work was supported by the National Key R&D Program of China (Nos. 2017YFE0300400 and 2017YFE0300406), and National Natural Science Foundation of China (Nos. 11575239 and 11775265).
More Information
  • Received Date: July 30, 2019
  • Revised Date: October 17, 2019
  • Accepted Date: October 21, 2019
  • Ion cyclotron resonance heating (ICRH), which can produce fast ions, is an important auxiliary heating method at EAST. To analyze the effect of ICRH-induced fast ions on the plasma pressure at EAST, simulations are performed using TRANSP and TORIC codes. It is found that the ICRF-induced fast ion pressure cannot be negligible when the ICRF power is sufficiently high. The magnitude of the total ion pressure can be raised up to 60% of the total pressure as the input power rises above 3 MW. The pressure profile is also significantly modified when the resonant layer is changed. It is shown that by changing the wave frequency and antenna position, the total ion pressure profile can be broadened, which might provide an option for profile control at EAST.
  • [1]
    Lao L L et al 1985 Nucl. Fusion 25 1611
    [2]
    Lao L L et al 2005 Fusion Sci. Technol. 48 968
    [3]
    Li G Q et al 2013 Plasma Phys. Controlled Fusion 55 125008
    [4]
    Blum J et al 1990 Nucl. Fusion 30 1475
    [5]
    Mc Carthy P J 2012 Plasma Phys. Controlled Fusion 54 015010
    [6]
    Xia T Y et al 2017 Nucl. Fusion 57 116016
    [7]
    Wan B N et al 2017 Nucl. Fusion 57 102019
    [8]
    Du H F et al 2018 Nucl. Fusion 58 066011
    [9]
    Li Y L et al 2018 Phys. Plasmas 25 082503
    [10]
    Ding S et al 2017 Phys. Plasmas 24 056114
    [11]
    Zheng Z et al 2018 Plasma Sci. Technol. 20 065103
    [12]
    Zhang J H et al 2017 Nucl. Fusion 57 066030
    [13]
    Wu M Q et al 2018 Nucl. Fusion 58 046001
    [14]
    Budny R V 1994 Nucl. Fusion 34 1247
    [15]
    Brambilla M 1999 Plasma Phys. Controlled Fusion 41 1
    [16]
    Bickerton R J, Connor J W and Taylor J B 1971 Nat. Phys. Sci. 229 110
    [17]
    Galeev A A 1971 Sov. Phys. JETP 32 752
    [18]
    Garofalo A M et al 2014 Fusion Eng. Des. 89 876
    [19]
    Chen J L et al 2017 Plasma Phys. Controlled Fusion 59 075005
    [20]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [21]
    Bonoli P T et al 2000 Phys. Plasmas 7 1886
    [22]
    Lin Y et al 2004 Phys. Plasmas 11 2466
    [23]
    Wright J C et al 2004 Phys. Plasmas 11 2473
    [24]
    Wukitch S J et al 2005 Phys. Plasmas 12 056104
    [25]
    Yang C, Zhu S Z and Zhang X J 2010 Plasma Sci. Technol. 12 20
    [26]
    Zhang X et al 2010 J. Plasma Fusion Res. Ser. 9 610
    [27]
    Brambilla M 1989 Plasma Phys. Controlled Fusion 31 723
    [28]
    Hammett G W 1986 Fast ion studies of ion cyclotron heating in the PLT tokamak PhD Thesis Princeton University
    [29]
    Stix T H 1972 Plasma Phys. 14 367
    [30]
    Stix T H 1975 Nucl. Fusion 15 737
    [31]
    Tang V et al 2007 Plasma Phys. Controlled Fusion 49 873
    [32]
    Bertelli N et al 2017 Nucl. Fusion 57 056035
    [33]
    Jucker M et al 2011 Plasma Phys. Controlled Fusion 53 054010
    [34]
    Fiore C L et al 2012 Phys. Plasmas 19 056113
    [35]
    Rice J E et al 2002 Nucl. Fusion 42 510
    [36]
    Gormezano C et al 2007 Nucl. Fusion 47 S285 9
  • Related Articles

    [1]Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817
    [2]Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e
    [3]Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789
    [4]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [5]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [6]Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b
    [7]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [8]LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02
    [9]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [10]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
  • Cited by

    Periodical cited type(1)

    1. Choi, M.-S., Kim, S.-J., Lee, Y.-S. et al. Computational Analysis on Self-Resonance Frequency of Solenoid and Planar Inductor. Applied Science and Convergence Technology, 2023, 32(2): 54-57. DOI:10.5757/ASCT.2023.32.2.54

    Other cited types(0)

Catalog

    Article views (177) PDF downloads (122) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return