Advanced Search+
Qunxia ZHANG (张群霞), Cao FANG (方草), Zhu CHEN (陈祝), Qing HUANG (黄青). Application of persulfate in low-temperature atmospheric-pressure plasma jet for enhanced treatment of onychomycosis[J]. Plasma Science and Technology, 2020, 22(2): 25503-025503. DOI: 10.1088/2058-6272/ab568b
Citation: Qunxia ZHANG (张群霞), Cao FANG (方草), Zhu CHEN (陈祝), Qing HUANG (黄青). Application of persulfate in low-temperature atmospheric-pressure plasma jet for enhanced treatment of onychomycosis[J]. Plasma Science and Technology, 2020, 22(2): 25503-025503. DOI: 10.1088/2058-6272/ab568b

Application of persulfate in low-temperature atmospheric-pressure plasma jet for enhanced treatment of onychomycosis

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11635013 and 11775272).
More Information
  • Received Date: June 20, 2019
  • Revised Date: November 10, 2019
  • Accepted Date: November 11, 2019
  • Fungal infection of human nails, or onychomycosis, affects 10% of the world’s adult population, but current therapies have various drawbacks. In this work, we employed a self-made lowtemperature plasma (LTP) device, namely, an atmospheric-pressure plasma jet (APPJ) device to treat the nails infected with Trichophyton rubrum (T. rubrum) with the aid of persulfate solution. We found that persulfate solution had a promoting effect on plasma treatment of onychomycosis. With addition of sodium persulfate, the APPJ therapy could cure onychomycosis after several times of treatment. As such, this work has demonstrated a novel and effective approach which makes good use of LTP technique in the treatment of onychomycosis.
  • [1]
    Hay R J and Baran R 2011 J. Am. Acad. Dermatol. 65 1219
    [2]
    Caitlin C et al 2011 Arch. Dermatol. 147 1277
    [3]
    Ghannoum M A et al 2000 J. Am. Acad. Dermatol. 43 641
    [4]
    Matricciani L, Talbot K and Jones S 2011 J. Foot Ankle Res.4 26
    [5]
    Mai-Prochnow A et al 2016 Sci. Rep. 6 38610
    [6]
    Bai N et al 2011 Plasma Process. Polym. 8 424
    [7]
    Ziuzina D et al 2014 Food Microbiol. 42 109
    [8]
    Miao H and Yun G 2011 Appl. Surf. Sci. 257 7065
    [9]
    Sun P et al 2011 Appl. Phys. Lett. 98 021501
    [10]
    Kolb J F et al 2008 Appl. Phys. Lett. 92 241501
    [11]
    Rahimi-Verki N et al 2016 Photodiagn. Photodyn. Ther. 13 66
    [12]
    Xiong Z et al 2011 Appl. Phys. Lett. 98 221503
    [13]
    Xu Z M et al 2015 Plasma Process. Polym. 12 827
    [14]
    Mai-Prochnow A et al 2015 PLoS One 10 e0130373
    [15]
    Zimmermann J L et al 2011 J. Phys. D: Appl. Phys. 44 505201
    [16]
    Puligundla P and Mok C 2018 World J. Microbiol. Biotechnol.34 143
    [17]
    Moreau S et al 2000 J. Appl. Phys. 88 1166
    [18]
    Schlegel J, Köritzer J and Boxhammer V 2013 Clin. Plasma Med. 1 2
    [19]
    Ikehara S et al 2015 Plasma Process. Polym. 12 1348
    [20]
    Zhang J P et al 2019 Contrib. Plasm Phys. 59 92
    [21]
    Xiong Z L and Graves D B 2017 J. Phys. D: Appl. Phys. 50 05LT01
    [22]
    Huang K C, Couttenye R A and Hoag G E 2002 Chemosphere 49 413
    [23]
    Chen J Y et al 2018 Sep. Purif. Technol. 191 75
    [24]
    Zou J et al 2013 Environ. Sci. Technol. 47 11685–91
    [25]
    Liang C J and Guo Y Y 2010 Environ. Sci. Technol. 44 8203
    [26]
    Liang C J and Su H W 2009 Ind. Eng. Chem. Res. 48 5558
    [27]
    Tang S F et al 2018 Chem. Eng. J. 337 446
    [28]
    Fang C and Huang Q 2018 Plasma Med. 8 321
    [29]
    Daeschlein G et al 2011 IEEE Trans. Plasma Sci. 39 815
    [30]
    Heinlin J et al 2013 Future Microbiol. 8 1097
    [31]
    Shapourzadeh A et al 2016 Arch. Biochem. Biophys. 608 27
    [32]
    Ke Z G et al 2017 Clin. Plasma Med. 7-8 1
    [33]
    Peres N T D A et al 2016 Med. Mycol. 54 420
    [34]
    Shimamura T et al 2011 Antimicrob. Agents Chemother.55 3150
    [35]
    Elewski B E 1998 Clin. Microbiol. Rev. 11 415
    [36]
    Wang X H et al 2016 Catal. Sci. Technol. 6 243
    [37]
    Wang B et al 2017 Appl. Catal. B 206 127
    [38]
    Xu Y, Ai J and Zhang H 2016 J. Hazard. Mater. 309 87
    [39]
    Anipsitakis G P and Dionysiou D D 2003 Environ. Sci.Technol. 37 4790
    [40]
    Zhang Q F et al 2018 Chemosphere 210 433
    [41]
    Jen J F, Leu M F and Yang T C 1998 J. Chromatogr. A 796 283
    [42]
    Jung M Y et al 2015 Clin. Exp. Dermatol. 40 479
    [43]
    Chen F et al 2018 Chem. Eng. J. 354 983
    [44]
    Oh W D, Dong Z L and Lim T T 2016 Appl. Catal. B 194 169
    [45]
    Xiong Z L et al 2016 Plasma Process. Polym. 13 588
    [46]
    Lipner S R, Friedman G and Scher R K 2017 Clin. Exp.Dermatol. 42 295
  • Related Articles

    [1]Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4
    [2]Weigang CHEN (陈卫刚), Haixia WU (武海霞), Jiawei FAN (樊佳炜), Zhi FANG (方志), Shaohua LIN (林少华). Activated persulfate by DBD plasma and activated carbon for the degradation of acid orange II[J]. Plasma Science and Technology, 2020, 22(3): 34009-034009. DOI: 10.1088/2058-6272/ab5f34
    [3]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [4]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [5]Xingmin SHI (石兴民), Jinren LIU (刘进仁), Guimin XU (许桂敏), Yueming WU (吴月明), Lingge GAO (高菱鸽), Xiaoyan LI (李晓艳), Yang YANG (杨阳), Guanjun ZHANG (张冠军). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 44004-044004. DOI: 10.1088/2058-6272/aa9b78
    [6]Yanghaichao LIU (刘杨海超), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). NO reduction using low-temperature SCR assisted by a DBD method[J]. Plasma Science and Technology, 2018, 20(1): 14002-014002. DOI: 10.1088/2058-6272/aa9326
    [7]ZHENG Dianfeng (郑殿峰). The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation[J]. Plasma Science and Technology, 2016, 18(11): 1110-1115. DOI: 10.1088/1009-0630/18/11/09
    [8]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [9]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [10]XIA Donghui (夏冬辉), HUANG Mei (黄梅), ZHOU Jun (周俊), et al.. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A[J]. Plasma Science and Technology, 2014, 16(4): 410-414. DOI: 10.1088/1009-0630/16/4/20
  • Cited by

    Periodical cited type(1)

    1. Choi, M.-S., Kim, S.-J., Lee, Y.-S. et al. Computational Analysis on Self-Resonance Frequency of Solenoid and Planar Inductor. Applied Science and Convergence Technology, 2023, 32(2): 54-57. DOI:10.5757/ASCT.2023.32.2.54

    Other cited types(0)

Catalog

    Article views (225) PDF downloads (163) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return