Advanced Search+
Weixuan ZHAO (赵玮璇), Liping LIAN (连莉萍), Yanpei WU (吴妍婄), Yanghaichao LIU (刘杨海超), Renxi ZHANG (张仁熙), Gang LUO (罗刚), Huiqi HOU (侯惠奇). Decomposition of dioxin-like components in a DBD reactor combined with Hg/Ar electrodeless ultraviolet[J]. Plasma Science and Technology, 2020, 22(3): 34005-034005. DOI: 10.1088/2058-6272/ab568e
Citation: Weixuan ZHAO (赵玮璇), Liping LIAN (连莉萍), Yanpei WU (吴妍婄), Yanghaichao LIU (刘杨海超), Renxi ZHANG (张仁熙), Gang LUO (罗刚), Huiqi HOU (侯惠奇). Decomposition of dioxin-like components in a DBD reactor combined with Hg/Ar electrodeless ultraviolet[J]. Plasma Science and Technology, 2020, 22(3): 34005-034005. DOI: 10.1088/2058-6272/ab568e

Decomposition of dioxin-like components in a DBD reactor combined with Hg/Ar electrodeless ultraviolet

Funds: This research was funded by National Natural Science Foundation of China (No. 21577023), the Special Research Project on Causes and Control Technology of Air Pollution (No. 2017YFC0212905) and the science and technology innovation action project supported by the Science and Technology Commission of Shanghai Municipality (No. 18DZ1202605).
More Information
  • Received Date: September 03, 2019
  • Revised Date: November 07, 2019
  • Accepted Date: November 11, 2019
  • A new combined reactor with Hg/Ar electrodeless ultraviolet (EDUV) activated by DBD for 3,4-dichlorodiphenyl ether abatement is presented. The effect of specific input energy and feeding gas component on 3,4-dichlorodiphenyl ether removal efficiency has been explored. Compared with a single DBD system, this new combined process performed a significant promotion on 3,4-dichlorodiphenyl ether abatement. Experiment results verified that active oxygen clearly contributed to the synergistic activity of DBD-EDUV system. Results of emission spectra showed that UV radiation of 253.7 nm could be detected in the DBD-EDUV system. Further, the products of DBD-EDUV process were analyzed via gas chromatographymass spectrometer (GC-MS) to reveal involved decomposition mechanism.
  • [1]
    Kogevinas M 2001 APMIS 109 S223
    [2]
    Aylward L L et al 2003 J. Toxicol. Environ. Health Part A 66 1
    [3]
    Marinković N et al 2010 Arch Ind. Hyg. Toxicol. 61 445
    [4]
    Abraham K et al 1998 Chemosphere 37 1731
    [5]
    Bruce-Vanderpuije P et al 2019 Sci. Total Environ. 673 631
    [6]
    Patandin S et al 1999 Environ. Health Perspect. 107 45
    [7]
    Devi N L et al 2014 Environ. Earth Sci. 72 3955
    [8]
    Gong Z M et al 2004 Chemosphere 54 1247
    [9]
    Thuy P T et al 2012 J. Mater. Cycles Waste Manage. 14 379
    [10]
    Zhou Z et al 2019 Chem. Eng. J. 372 836
    [11]
    Lou Y L et al 2019 Sci. Total Environ. 673 120
    [12]
    Wu M S et al 2019 Sci. Total Environ. 656 39
    [13]
    Wang Y et al 2012 Environ. Sci. Pollut. Res. 19 448
    [14]
    Zenteno-Rojas A et al 2019 Water, Air, Soil Pollut. 230 116
    [15]
    Liu J et al 2019 Chemosphere. 220 1041
    [16]
    Skodras G et al 2003 Mercury and PCBs adsorption onactivated carbons: Experimentation and modeling Proc. 8thInt. Conf. on Environmental Science and Technology(Lemnos Island, Greece) (University of the AegeanDepartment of Environmental Studies) Global NEST 2003
    [17]
    Millward R N et al 2005 Environ. Sci. Technol. 39 2880
    [18]
    Zimmerman J R et al 2004 Environ. Sci. Technol. 38 5458
    [19]
    Kirtay V et al 2018 Environ. Toxicol. Chem. 37 1767
    [20]
    Mocanu L P et al 2014 Polychlorinated biphenylsremoval.evaluation of pyrolysis effects on soil fertility Proc. 14th Int. Multidisciplinary Scientific Geo-Conf. and Expo (Albena, Bulgaria, 19–25 June 2014) (SGEM) 2014 (https://doi. org/10.5593/SGEM2014/B32/S13.029)
    [21]
    Paasivirta J et al 1985 Environ. Health Perspect. 60 269
    [22]
    Hu Z N et al 2006 J. Environ. Sci. 18 989
    [23]
    Liu X L et al 2019 J. Hazard. Mater. 363 90
    [24]
    Dasary S S R et al 2010 Int. J. Environ. Res. Public Health 7 3987
    [25]
    Wong K H et al 2004 J. Hazard. Mater. 109 149
    [26]
    Li X H et al 2014 Front. Environ. Sci. Eng. 8 277
    [27]
    Kim S W, Park H S and Kim H J 2003 Vacuum 70 59
    [28]
    Zhao W X et al 2019 Appl. Sci. 9 2751
    [29]
    Zhao W X et al 2018 Appl. Sci. 8 618
    [30]
    Huang L et al 2013 Chem. Eng. J. 228 1066
    [31]
    Fang H J et al 2007 Chemosphere 69 1734
    [32]
    Asiliana A et al 2009 Amer.-Eurasian J. Sustain. Agric. 3 393(www.aensiweb.net/AENSIWEB/aejsa/aejsa/2009/393-398.pdf)
    [33]
    Xia L Y et al 2008 Chemosphere 71 1774
    [34]
    Giuliani J L et al 2001 Plasma conditions in a moly-oxide electrodeless bulb discharge IEEE Conf. Record—Abstracts.PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEEInt. Conf. on Plasma Science and 13th IEEE Int. PulsedPower Conf. Las Vegas (Las Vegas, NV, USA, 17–22 June2001) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/PPPS.2001.1001731)
    [35]
    Huang L et al 2012 Chemosphere 88 229
    [36]
    Hong Z et al 2012 Plasma Sci. Technol. 14 134
    [37]
    Zhang J et al 2014 J. Environ. Eng. 141 04014093
    [38]
    Zhao Y J et al 2011 J. Hazard. Mater. 186 430
    [39]
    Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D: Appl.Phys. 20 1421
    [40]
    Seo H et al 2004 J. Appl. Phys. 96 6039
    [41]
    Wang S et al 2014 Chemosphere 111 7
  • Related Articles

    [1]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [2]Tao ZHU (竹涛), Wenjing BIAN (边文璟), Mingfeng MA (马名烽), Weili YE (叶维丽), Ruonan WANG (王若男), Xing ZHANG (张星). Influence of gas atmosphere on synergistic control of mercury and dioxin by nonthermal plasma[J]. Plasma Science and Technology, 2019, 21(4): 44006-044006. DOI: 10.1088/2058-6272/aaead7
    [3]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [4]WU Haixia (武海霞), FANG Zhi (方志), ZHOU Tong (周侗), LU Chen (陆晨), XU Yanhua (徐炎华). Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(5): 500-505. DOI: 10.1088/1009-0630/18/5/10
    [5]ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10
    [6]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [7]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [8]YANG Shen (杨深), SSHI Ting(石挺), LIU yang(刘洋 ), CHEN Yuming (陈育明). Modelling of Ar-Hg Electrodeless Lamps[J]. Plasma Science and Technology, 2012, 14(2): 147-151. DOI: 10.1088/1009-0630/14/2/12
    [9]SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713.
    [10]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
  • Cited by

    Periodical cited type(2)

    1. Zhao, L., You, H., Wang, S. Design-simulation of light radiation of a novel fixed-bed photocatalytic system with LED arrays on the engineering-outlook. Journal of Photochemistry and Photobiology A: Chemistry, 2022. DOI:10.1016/j.jphotochem.2022.113889
    2. Zhao, W., Hua, C., Zhang, X. et al. Study of selective hydrogenation of biodiesel in a DBD plasma reactor. Plasma Science and Technology, 2021, 23(9): 095506. DOI:10.1088/2058-6272/ac0812

    Other cited types(0)

Catalog

    Article views (135) PDF downloads (139) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return