Advanced Search+
Yu ZHANG (张宇), Jianjun WU (吴建军), Yang OU (欧阳), Daixian ZHANG (张代贤), Jian LI (李健). Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(4): 45501-045501. DOI: 10.1088/2058-6272/ab5a8e
Citation: Yu ZHANG (张宇), Jianjun WU (吴建军), Yang OU (欧阳), Daixian ZHANG (张代贤), Jian LI (李健). Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(4): 45501-045501. DOI: 10.1088/2058-6272/ab5a8e

Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy

Funds: The authors would like to thank National Natural Science Foundation of China for the financial assistance provided under the grant number 11772354 for this work.
More Information
  • Received Date: September 05, 2019
  • Revised Date: November 20, 2019
  • Accepted Date: November 21, 2019
  • In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion, a novel laser ablation pulsed plasma thruster is proposed, which separated the laser ablation and electromagnetic acceleration. Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster. The spectral lines at different times, positions and discharge intensities are experimentally recorded, and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines. With the discharge energy of 24 J, laser energy of 0.6 J and the use of aluminum propellant, the specific impulse and thrust efficiency reach 6808 s and 70.6%, respectively.
  • [1]
    Zhang Z et al 2019 Plasma Sources Sci. Technol. 28 025008
    [2]
    Zhang Z et al 2018 Plasma Sources Sci. Technol. 27 124003
    [3]
    Zhang Z et al 2018 Plasma Sources Sci. Technol. 27 015004
    [4]
    Cui W et al 2018 Plasma Sci. Technol. 20 024003
    [5]
    Liu Q et al 2019 Plasma Sci. Technol. 21 074005
    [6]
    Zhang Y et al 2018 Acta Astronaut. 151 432
    [7]
    Zhang Y et al 2016 Acta Astronaut. 127 438
    [8]
    Horisawa H and Kimura I 2000 Characterization of novel laser particle accelerators for space propulsion Proc. 36th AIAA/SAE/ASEE Joint Propulsion Conf. (Reston, VA: AIAA)
    [9]
    Matsubara K et al 2015 A Short-pulse laser-assisted pulsed lasma thruster Proc. 51st AIAA/SAE/ASEE Joint Propulsion Conf. (Reston, VA: AIAA)
    [10]
    Hosokawa H et al 2014 Short pulse operation of a laserassisted pulsed plasma thruster Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Reston, VA: AIAA)
    [11]
    Akashi N et al 2014 Plasma acceleration characteristic of a rectangular laser-electromagnetic hybrid thruster Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Reston, VA: AIAA)
    [12]
    Kobayashi H et al 2012 A plasma behavior analysis of a laserassisted pulsed plasma thruster Proc. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Reston, VA: AIAA)
    [13]
    Levchenko I et al 2018 Nat. Photonics 12 649
    [14]
    Zhang B et al 2019 Chem. Eng. Sci. 206 31
  • Cited by

    Periodical cited type(21)

    1. Xiong, S., Yang, N., Guan, H. et al. Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2024.343496
    2. He, Y., Ke, C., Wen, Q. et al. Automatic focusing remote laser induced breakdown spectroscopy analysis of trace elements in steel using support vector machine regression. IEEE Transactions on Instrumentation and Measurement, 2025. DOI:10.1109/TIM.2025.3550229
    3. Xiong, S., Liao, T., Chi, Y. et al. A strategy to reduce spectral intensity uncertainty and predicted content uncertainty of low and medium alloy steel elements. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106919
    4. Li, S., Zheng, R., Deguchi, Y. et al. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys. Plasma Science and Technology, 2023, 25(4): 045510. DOI:10.1088/2058-6272/aca5f4
    5. Zhang, D., Zhang, Z., Zhang, M. et al. Portable nanosecond laser for handheld laser-induced breakdown spectroscopy instruments. Optical Engineering, 2023, 62(3): 36102. DOI:10.1117/1.OE.62.3.036102
    6. Guo, M., Huang, Z., Wang, J. et al. origin Identification of Three Kinds of Dry-cured Ham Based on Laser-induced Breakdown Spectroscopy Technology Combined with Machine Learning Algorithm | [基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(10): 279-285. DOI:10.16429/j.1009-7848.2022.10.030
    7. Lei, B.-Y., Xu, B.-P., Wang, Y.-S. et al. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples | [非平坦样品激光诱导等离子体光谱特性研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(10): 3024-3030. DOI:10.3964/j.issn.1000-0593(2022)10-3024-07
    8. Cui, M., Guo, H., Chi, Y. et al. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106398
    9. Zhang, D., Feng, Z., Wei, K. et al. Remote Laser-induced Breakdown Spectroscopy and Its Application (Invited) | [远程激光诱导击穿光谱技术与应用(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2021, 50(10): 1030001. DOI:10.3788/gzxb20215010.1030001
    10. Cui, M., Deguchi, Y., Li, G. et al. Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106210
    11. Chang, F., Yang, J., Lu, H. et al. A LIBS quantitative analysis method for samples with changing temperature: Via functional data analysis. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1007-1017. DOI:10.1039/d0ja00514b
    12. Wang, Y., Bu, Y., Cai, Y. et al. Detection of electrolyte elements in human blood based on laser-induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2602525
    13. FUGANE, Y., KASHIWAKURA, S., WAGATSUMA, K. Control of laser focal point by using an electrically tunable lens in laser-induced plasma optical emission spectrometry. ISIJ International, 2020, 60(12): 2845-2850. DOI:10.2355/isijinternational.ISIJINT-2020-170
    14. Cui, M., Deguchi, Y., Wang, Z. et al. Signal Improvement for Underwater Measurement of Metal Samples Using Collinear Long-Short Double-Pulse Laser Induced Breakdown Spectroscopy. Frontiers in Physics, 2020. DOI:10.3389/fphy.2020.00237
    15. Rong, K., Wang, Z., Hu, R. et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074010. DOI:10.1088/2058-6272/ab7fbc
    16. Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48
    17. Cui, M., Deguchi, Y., Wang, Z. et al. Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105873
    18. Cui, M., Deguchi, Y., Yao, C. et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105839
    19. Wang, Z., Deguchi, Y., Shiou, F. et al. Feasibility investigation for online elemental monitoring of iron and steel manufacturing processes using laser-induced breakdown spectroscopy. ISIJ International, 2020, 60(5): 971-978. DOI:10.2355/isijinternational.ISIJINT-2019-317
    20. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873
    21. Wang, Y., Bu, Y., Wu, F. et al. Research on LIBS quantitative analysis of heavy metal concentration in polluted water-based on Fourier self-deconvolution method. Proceedings of SPIE - The International Society for Optical Engineering, 2019. DOI:10.1117/12.2544699

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return