Advanced Search+
Xudong GAO (高旭东), Jixuan WANG (王继选), Yanfeng GAO (高艳丰), Hongyan YAN (闫红艳), Kaiqiang XUE (薛凯强), Xingnan DENG (邓星男), Xin YANG (杨新). Underwater pulsed spark discharge influenced by the relative position between the top of a pin electrode and an insulating tube[J]. Plasma Science and Technology, 2020, 22(5): 55401-055401. DOI: 10.1088/2058-6272/ab5f3d
Citation: Xudong GAO (高旭东), Jixuan WANG (王继选), Yanfeng GAO (高艳丰), Hongyan YAN (闫红艳), Kaiqiang XUE (薛凯强), Xingnan DENG (邓星男), Xin YANG (杨新). Underwater pulsed spark discharge influenced by the relative position between the top of a pin electrode and an insulating tube[J]. Plasma Science and Technology, 2020, 22(5): 55401-055401. DOI: 10.1088/2058-6272/ab5f3d

Underwater pulsed spark discharge influenced by the relative position between the top of a pin electrode and an insulating tube

Funds: This work is supported by the Science and Technology Research Project of the Hebei Higher Education Institutions of China: No. ZD2014031.
More Information
  • Received Date: August 04, 2019
  • Revised Date: December 03, 2019
  • Accepted Date: December 04, 2019
  • Needle-to-plane geometry has been widely investigated and used in underwater pulsed discharges. The position relationship between the needle tip and insulation layer significantly affects the discharge patterns. We carried out experiments on underwater pulsed discharge with the needle tip protruding from, recessing into, and flushing with the insulating tube. The results are as follows. First, underwater pulsed discharge has a strong randomness under the experimental conditions. Different discharge patterns appeared under the same experimental environment. Second, recession into the insulator surface led to a higher probability of occurrence but a lower strength of spark discharge than protrusion. Third, between the needle tip protruding from and recessing into the insulation material, the average speed of propagation of underwater pulsed spark discharge decreased by an order of magnitude. The study shows that the optimum length of needle tip protruding from the insulation layer is 1 mm to obtain a strong underwater pulsed spark discharge.
  • [1]
    Segundo E H et al 2018 Mater. Chem. Phys. 217 1
    [2]
    Lung J K et al 2007 J. Alloy. Compd. 434–5 655
    [3]
    Khlyustova A et al 2018 J. Electrostat. 96 76
    [4]
    Yang J et al 2019 J. Electrostat. 98 34
    [5]
    Lee S J et al 2018 Sep. Purif. Technol. 193 351
    [6]
    Hong Y C et al 2018 J. Electrostat. 91 56
    [7]
    Sun B et al 2018 Bioelectrochemistry 120 112
    [8]
    Cezary K 2019 Opt. Laser. Eng. 122 23
    [9]
    Lee K et al 2017 J. Appl. Phys. 121 243302
    [10]
    Kim H S et al 2015 Int. J. Heat Mass Transfer 88 527
    [11]
    Sugiarto A T et al 2003 J. Electrostat. 58 135
    [12]
    Sun B, Sato M and Clements J S 1999 J. Phys. D Appl. Phys.32 1908
    [13]
    Sharma A K et al 1993 Hazard. Waste Hazard. Mater. 10 209
    [14]
    Sato M, Ohgiyama T and Clements J S 1996 IEEE Trans. Ind.Appl. 32 106
    [15]
    Lee H Y 2003 Underwater discharge and cell destruction by shockwaves J. Korean Phys. Soc. 42 S880–4
    [16]
    Kunitomo S and Sun B 2001 Removal of phenol in water by pulsed high voltage discharge Proc. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE Int. Conf. on Plasma Science and 13th IEEE Int. Pulsed Power Conf.Digest of Papers (Las Vegas, 17–22 June 2001)(Piscataway, NJ: IEEE) 1138–41
    [17]
    Suarasan I et al 2002 J. Electrostat. 54 207
    [18]
    Katsuki S et al 2002 IEEE Trans. Dielect. Electr. Insul. 9 498
    [19]
    Wang C H, Wu Y and Shen X Q 2010 J. Electrostat. 68 31
    [20]
    Sato M, Yamada Y and Sugiarto A T 2000 Decoloration of dyes in aqueous solution by pulsed discharge plasma in water through the pinhole Trans. Inst. Fluid-Flow Mach.107 95–100
    [21]
    Locke B R et al 2006 Ind. Eng. Chem. Res. 45 882
    [22]
    Sato M, Hatori T and Saito M 1997 IEEE Trans. Ind. Appl.33 1527
    [23]
    Sunka P et al 1999 Plasma Sources Sci. Technol. 8 258
    [24]
    Yang Y et al 2010 Water Res. 44 3659
    [25]
    Sun B 2013 Discharge Plasma in Liquid and Its Applications (Beijing: Science Press) (in Chinese)
    [26]
    Jin M J 2004 Fundamental research on electrical characteristics of underwater plasma sound source MSc Thesis Institute of Electrical Engineering of the Chinese Academy of Sciences (in Chinese)
    [27]
    Yang Y et al 2009 Int. J. Heat Mass Transfer 52 4901
    [28]
    Šunka P 2001 Phys. Plasmas 8 2587
    [29]
    Korobeinikov S M and Yanshin E V 1983 Dynamics of the electrostriction pressure in a fluid near a spherical electrode Sov. Phys. Technol. Phys. 28 1288–2190
  • Related Articles

    [1]Jiaxin LI, Zhengchao DUAN, Feng HE, Ruoyu HAN, Jiting OUYANG. Influence of the pulse polarity on micro-hollow cathode helium plasma jet[J]. Plasma Science and Technology, 2023, 25(7): 075401. DOI: 10.1088/2058-6272/acb489
    [2]Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0
    [3]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [4]Chunxia LIANG (梁春霞), Ning WANG (王宁), Zhengchao DUAN (段正超), Feng HE (何锋), Jiting OUYANG (欧阳吉庭). Experimental investigations of enhanced glow based on a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2019, 21(2): 25401-025401. DOI: 10.1088/2058-6272/aaef49
    [5]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [6]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [7]Shoujie HE (何寿杰), Peng WANG (王鹏), Jing HA (哈静), Baoming ZHANG (张宝铭), Zhao ZHANG (张钊), Qing LI (李庆). Effects of discharge parameters on the micro-hollow cathode sustained glow discharge[J]. Plasma Science and Technology, 2018, 20(5): 54006-054006. DOI: 10.1088/2058-6272/aab54b
    [8]Cheng ZHANG (章程), Jintao QIU (邱锦涛), Fei KONG (孔飞), Xingmin HOU (侯兴民), Zhi FANG (方志), Yu YIN (殷禹), Tao SHAO (邵涛). Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 14011-014011. DOI: 10.1088/2058-6272/aa8c6e
    [9]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [10]HE Feng (何锋), HE Shoujie (何寿杰), ZHAO Xiaofei (赵晓菲), GUO Bingang (郭滨刚), OUYANG Jiting (欧阳吉庭). Study of the Discharge Mode in Micro-Hollow Cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083. DOI: 10.1088/1009-0630/14/12/08
  • Cited by

    Periodical cited type(1)

    1. Li, J., Duan, Z., He, F. et al. Influence of the pulse polarity on micro-hollow cathode helium plasma jet. Plasma Science and Technology, 2023, 25(7): 075401. DOI:10.1088/2058-6272/acb489

    Other cited types(0)

Catalog

    Article views (168) PDF downloads (126) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return